Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Testing for High Lift Systems

2011-10-18
2011-01-2754
Improving the verification and certification process of the high lift system by introduction of virtual testing is one of the approaches to counter the challenges related to testing of future aircraft, in terms of performing more tests of more complex systems in less time. The quality of the applied modelling methods itself and the guarantee of a completely traceable simulation lifecycle management along the aircraft development are essential. The presentation shows how existing processes for the management of all test related data have to be extended to cover the specifics of using multi body simulation models for virtual tests related to high lift failure cases. Based on a demonstrator, MSC Software GmbH and Airbus developed and are still refining the SimManager based “High Lift System Virtual Test Portal”. This portal has to fulfil on the one side global requirements like data management, data traceability and workflow management.
Technical Paper

Vibration Assisted Drilling of Aerospace Materials

2016-09-27
2016-01-2136
Insufficient chip extraction often leads to disruptions of automated drilling processes and will have a negative impact on the surface qualities. One opportunity to avoid chip accumulation is based on a kinematically enforced chip breakage caused by sinusoidal axial oscillations of the drilling tool. Recent investigations have shown that the quality of chip extraction is, amongst others, considerably depending on the chip shape and mass which are defined by the cutting parameters feed, amplitude and frequency. So far only mechanical systems in the form of tool holders have been available on the market, which are restricted to a fixed frequency (oscillation frequency is coupled to the spindle speed). In the present study a spindle with magnetic bearings was used which allows to adjust the oscillation frequency independent of the spindle speed and therefore enables all opportunities to affect the generated chip shapes.
Technical Paper

Versatile NC Part Programs for Automated Fastening Systems in Pulsed Assembly Lines

2011-10-18
2011-01-2771
Pulsed assembly lines are providing an enormous potential to the aviation industry, especially in terms of reduced lead times, optimized asset utilization and an increased ratio of value adding processes. As it comes near to flow manufacturing the realization of a pulsed assembly line leads to special requirements to the use of NC programs for automated drilling and fastening processes, especially as a result of the unique part positions upon each pulse and concerning the balancing of the work onto several serialized fastening machines. The key to those challenges are versatile NC part programs that eliminate the need for any additionally written NC programs by self-adapting onto the concrete situation within the working areas of the production line.
Technical Paper

Variation Aware Assembly Systems for Aircraft Wings

2016-09-27
2016-01-2106
Aircraft manufacturers desire to increase production to keep up with anticipated demand. To achieve this, the aerospace industry requires a significant increase in the manufacturing and assembly performance to reach required output levels. This work therefore introduces the Variation Aware Assembly (VAA) concept and identifies its suitability for implementation into aircraft wing assembly processes. The VAA system concept focuses on achieving assemblies towards the nominal dimensions, as opposed to traditional tooling methods that aim to achieve assemblies anywhere within the tolerance band. It enables control of the variation found in Key Characteristics (KC) that will allow for an increase in the assembly quality and product performance. The concept consists of utilizing metrology data from sources both before and during the assembly process, to precisely position parts using motion controllers.
Research Report

Unsettled Technology Domains in Industrial Smart Assembly Tools Supporting Industry 4.0

2020-09-29
EPR2020018
“Smart” refers to tools that are “specific, measurable, achievable, reasonable/realistic, and time bound.” Smart assembly tools are used in many industries, including automotive, aerospace, and space for measuring, inspecting, gauging, drilling, and installing all existing fastening systems. Inside the Industry 4.0 environment, these tools have a huge influence on Information and Communication Technology (ICT), assembly cost reduction, process control, and even the product and process quality. These four domains—and their undefined nature—are the focus of this SAE EDGE™ Research Report. The technical issues identified here need to be discussed, the goals clarifying the scope of the industry-wide need to be aligned, and the issues requiring standardization need prioritized. NOTE: SAE EDGE Research Reports are intended to identify and illuminate key issues in emerging, but still unsettled, technologies of interest to the mobility industry.
Research Report

Unsettled Technology Areas in Deterministic Assembly Approaches for Industry 4.0

2021-08-20
EPR2021018
Increased production rates and cost reduction are affecting manufacturing in all mobility industry sectors. One enabling methodology that could achieve these goals in the burgeoning “Industry 4.0” environment is the optimized deterministic assembly (DA) approach. It always forms the same final structure and has a strong link to design-for-assembly and design-for-automation. The entire supply chain is considered, with drastic savings at the final assembly line level through recurring costs and lead-time reduction. Unsettled Technology Areas in Deterministic Assembly Approaches for Industry 4.0 examines the evolution of previous assembly principles that lead up to and enable the DA approach, related simulation methodologies, and undefined and unsolved links between these domains. Click here to access the full SAE EDGETM Research Report portfolio.
Technical Paper

Towards Self-Adaptive Fixturing Systems for Aircraft Wing Assembly

2015-09-15
2015-01-2493
The aim of this work was to develop a new assembly process in conjunction with an adaptive fixturing system to improve the assembly process capability of specific aircraft wing assembly processes. The inherently complex aerospace industry requires a step change in its capability to achieve the production ramp up required to meet the global demand. This paper evaluates the capability of adaptive fixtures to identify their suitability for implementation into aircraft wing manufacturing and assembly. To understand the potential benefits of these fixtures, an examination of the current academic practices and an evaluation of the existing industrial solutions is highlighted. The proposed adaptive assembly process was developed to account for the manufacturing induced dimensional variation that causes significant issues in aircraft wing assembly. To test the effectiveness of the adaptive assembly process, an aircraft wing assembly operation was replicated on a demonstrator test rig.
Technical Paper

The Use of Vehicle Drive Cycles to Assess Spark Plug Fouling Performance

1994-02-01
940101
Spark plug fouling is a common problem when vehicles are repeatedly operated for very short periods, particularly at low temperatures. This paper describes a test procedure which uses a series of short, high-load drive cycles to assess plug fouling under realistic conditions. The engine is force cooled between drive cycles in order to increase test throughput. Spark plug resistance is shown to be a poor indicator of the effect of fouling on engine performance and the rate of misfiring is given as an alternative measure. An automated technique to detect misfires from engine speed data is described. This has been used to investigate the effect of spark plug type, fuelling level and spark timing on fouling. Spark plugs which are designed to run hotter are found to be more resistant to plug fouling. Isolated adjustments to fuelling level and spark timing calibrations within the range providing acceptable performance have a weak effect on susceptibility to plug fouling.
Research Report

The Right Level of Automation for Industry 4.0

2022-05-16
EPR2022013
In its entirety, automation is part of an integrated, multi-disciplinary product development process including the design, process, production, logistics, and systems approach—it depends on all these areas, but it also influences them as well. Automation in aerospace manufacturing is present throughout the entire supply chain, from elementary part manufacturing at suppliers up to final assembly, and a clear understanding of all the benefits (and drawbacks) of automation would help designers and engineers select the right designs for and levels of automation. The Right Level of Automation Within Industry 4.0 examines all impacts of automation that should be known by designers, manufacturers, and companies before investments in automation-related decisions are made—regardless of the which industry they work in. The process and the set of criteria discussed in this report will help decision makers select the right level of automation.
Journal Article

The Effects of Cylinder Deactivation on the Thermal Behaviour and Performance of a Three Cylinder Spark Ignition Engine

2016-10-17
2016-01-2160
A physics based, lumped thermal capacity model of a 1litre, 3 cylinder, turbocharged, directly injected spark ignition engine has been developed to investigate the effects of cylinder deactivation on the thermal behaviour and fuel economy of small capacity, 3 cylinder engines. When one is deactivated, the output of the two firing cylinders is increased by 50%. The largest temperature differences resulting from this are between exhaust ports and between the upper parts of liners of the deactivated cylinder and the adjacent firing cylinder. These differences increase with load. The deactivated cylinder liner cools to near-coolant temperature. Temperatures in the lower engine structure show little response to deactivation. Temperature response times following deactivation or reactivation events are similar. Motoring work for the deactivated cylinder is a minor loss; the net benefit of deactivation diminishes with increasing load.
Journal Article

The Application of New Approaches to the Analysis of Deposits from the Jet Fuel Thermal Oxidation Tester (JFTOT)

2017-10-08
2017-01-2293
Studies of diesel system deposits continue to be the subject of interest and publications worldwide. The introduction of high pressure common rail systems resulting in high fuel temperatures in the system with the concomitant use of fuels of varying solubilizing ability (e.g. ULSD and FAME blends) have seen deposits formed at the tip of the injector and on various internal injector components. Though deposit control additives (DCAs) have been successfully deployed to mitigate the deposit formation, work is still required to understand the nature and composition of these deposits. The study of both tip and internal diesel injector deposits (IDID) has seen the development of a number of bench techniques in an attempt to mimic field injector deposits in the laboratory. One of the most used of these is the Jet Fuel Thermal Oxidation Tester or JFTOT (ASTM D3241).
Journal Article

Technology Review of Thermal Forming Techniques for use in Composite Component Manufacture

2015-09-15
2015-01-2610
There is a growing demand for composites to be utilised in the production of large-scale components within the aerospace industry. In particular the demand to increase production rates indicates that traditional manual methods are no longer sufficient, and automated solutions must be sought. This typically leads to automated forming processes where there are a limited number of effective options. The need for forming typically arises from the inability of layup methods to produce complex geometries of structural components. This paper reviews the current state of the art in automated forming processes, their limitations and variables that affect performance in the production of large scale components. In particular the paper will focus on the application of force and heat within secondary forming processes. It will then review the effects of these variables against the structure of the required composite component and identify viability of the technology.
Journal Article

Structural Quality Inspection Based on a RGB-D Sensor: Supporting Manual-to-Automated Assembly Operations

2015-09-15
2015-01-2499
The assembly and manufacture of aerospace structures, in particular legacy products, relies in many cases on the skill, or rather the craftsmanship, of a human operator. Compounded by low volume rates, the implementation of a fully automated production facility may not be cost effective. A more efficient solution may be a mixture of both manual and automated operations but herein lies an issue of human error when stepping through the build from a manual operation to an automated one. Hence the requirement for an advanced automated assembly system to contain functionality for inline structural quality checking. Machine vision, used most extensively in manufacturing, is an obvious choice, but existing solutions tend to be application specific with a closed software development architecture.
Technical Paper

Software Complex for Riveting Process Simulation

2011-10-18
2011-01-2772
The presented paper describes the software complex developed in St. Petersburg Polytechnical University for AIRBUS aimed at simulation of aircraft assembly process. Previous version of this complex was described in [1].
Journal Article

Skills Synergy Leading to RTM Flow Simulation Success Story

2011-10-18
2011-01-2629
Industrial requirements imply optimizing the development cycle, reducing manufacturing costs and reaching marketable product maturity as fast as possible. The design stage often involves multiple sites and various partners. In this context, the use of computer simulation becomes absolutely necessary to meet industrial needs. Nevertheless, this activity can be effective only if it is integrated correctly in the industrial organization. In the aeronautical and space systems industry, mechanical specifications often require the use of composites reinforced by continuous carbon fibers. The goal of this article is to describe how, on a time frame of nearly twenty years, a series of scientific and technical tasks were carried out in partnership in order to develop, validate and implement Resin Transfer Molding (RTM) flow simulation and cure analysis for high performance composites. The research stage started at the university in 1991.
Technical Paper

Simulation of Aircraft Assembly via ASRP Software

2019-09-16
2019-01-1887
ASRP (Assembly Simulation of Riveting Process) software is a special tool for assembly process modelling for large scale airframe parts. On the base of variation simulation, ASRP provides a convenient way to analyze, verify and optimize the arrangement of temporary fasteners. During the assembly of airframe certain criteria on residual gap between parts must be fulfilled. The numerical approach implemented in ASRP allows to evaluate the quality of contact on every stage of assembly process and solve verification and optimization problems for temporary fastener patterns. The paper is devoted to description of several specialized approaches that combine statistical analysis of measured data and numerical simulation using high-performance computing for optimization of fastener patterns, calculation of forces in fasteners needed to close initial gaps, and identification of hazardous areas in junction regions via ASRP software.
Technical Paper

Rivetless Nutplate Developments for Aerospace Applications

2011-10-18
2011-01-2756
Within this paper, the AIRBUS approach on the development of rivetless nutplates as an alternative to riveted anchor nuts is described. Within the frame of a wider analysis, it was identified that currently used riveted anchor nut elements does have disadvantages with negative impact on an optimized cost-efficient and lead-time driven design and manufacturing environment. Rivetless nutplate systems provide some features that are potentially capable to mitigate some of the identified disadvantages of riveted elements. The paper covers the key requirements and objectives that were put in place in order to identify the most beneficial solution(s). It furthermore contains detailed information on the rivetless nutplate systems selected by AIRBUS and the justification for the selection that was made.
Technical Paper

Review of Reconfigurable Assembly Systems Technologies for Cost Effective Wing Structure Assembly

2013-09-17
2013-01-2336
Airbus commercial wings are assembled manually in dedicated steel structures. The lead time to design, manufacture and commission these fixtures is often in excess of 24 months. Due to the nature of these fixtures, manufacturing is slow in responding to changes in demand. There is underused capacity in some areas and insufficient ramp-up speed where increased production rate is needed. Reconfigurable Manufacturing Systems and Reconfigurable Assembly Systems (RAS) provide an approach to system design that provides appropriate capacity when needed. The aim of the paper is to review RAS technologies that are suitable for cost-effective wing structure assembly and what knowledge gaps exist for a RAS to be achieved. The paper examines successful cases of RAS and reviews relevant system design approaches. Cost savings are acknowledged and tabularised where demonstrated in research. The research gaps to realising a RAS for wing assembly are identified and different approaches are considered.
Technical Paper

Reducing Energy Use in Aircraft Component Manufacture - Applying Best Practice in Sustainable Manufacturing

2011-10-18
2011-01-2739
Rising energy costs and increased regulation in recent years have caused industrialists to investigate how to apply ‘energy efficiency’ to their manufacturing operations. As well as reducing operating costs, the benefits of a ‘green’ image as a market differentiator are beginning to be realised. The literature describes the successful implementation of a variety of approaches to energy reduction, with particular focus on energy intensive industries (such as foundries) and on improvements to building services (such as lighting). However, a systematic approach to applying sustainable practices to the manufacturing processes involved in the production of high value products, such as aircraft, is noticeably absent. This paper describes how a number of sustainable manufacturing approaches have been combined, enhanced and applied to the shop floor of a manufacturing facility in the UK responsible for the production of large component assemblies for the aerospace industry.
Journal Article

Reconfigurable Assembly System Design Methodology: A Wing Assembly Case Study

2015-09-15
2015-01-2594
Current assembly systems that deal with large, complex structures present a number of challenges with regard to improving operational performance. Specifically, aerospace assembly systems comprise a vast array of interrelated elements interacting in a myriad of ways, resulting in a deeply complex process that requires a multi-disciplined team of engineers. The current approach to ramp-up production rate involves building additional main assembly fixtures which require large investment and lead times up to 24 months. Within Airbus Operations Ltd there is a requirement to improve the capacity and flexibility of assembly systems, thereby reducing non-recurring costs and time-to-market. Recent trends to improve manufacturing agility advocate Reconfigurable Assembly Systems (RAS) as a viable solution. Yet, adding reconfigurability to assembly systems further increases both the operational and design complexity.
X