Refine Your Search

Topic

Author

Search Results

Technical Paper

Validation of a Theoretical Model for the Correction of Heat Transfer Effects in Turbocharger Testing through a Quasi-3D Model

2020-04-14
2020-01-1010
In the last few years, the effect of diabatic test conditions on compressor performance maps has been widely investigated, leading some Authors to propose different correction models. The accuracy of turbocharger performance map constitute the basis for the tuning and validation of a numerical method, usually adopted for the prediction of engine-turbocharger matching. Actually, it is common practice in automotive applications to use simulation codes, which can either require measured compression ratio and efficiency maps as input values or calculate them “on the fly” throughout specific sub-models integrated in the numerical procedures. Therefore, the ability to correct the measured performance maps taking into account internal heat transfer would allow the implementation of commercial simulation codes used for engine-turbocharger matching calculations.
Technical Paper

Validation of Diesel Combustion Models with Turbulence Chemistry Interaction and Detailed Kinetics

2019-09-09
2019-24-0088
Detailed and fast combustion models are necessary to support design of Diesel engines with low emission and fuel consumption. Over the years, the importance of turbulence chemistry interaction to correctly describe the diffusion flame structure was demonstrated by a detailed assessment with optical data from constant-volume vessel experiments. The main objective of this work is to carry out an extensive validation of two different combustion models which are suitable for the simulation of Diesel engine combustion. The first one is the Representative Interactive Flamelet model (RIF) employing direct chemistry integration. A single flamelet formulation is generally used to reduce the computational time but this aspect limits the capability to reproduce the flame stabilization process. To overcome such limitation, a second model called tabulated flamelet progress variable (TFPV) is tested in this work.
Journal Article

Towards the LES Simulation of IC Engines with Parallel Topologically Changing Meshes

2013-04-08
2013-01-1096
The implementation and the combination of advanced boundary conditions and subgrid scale models for Large Eddy Simulation (LES) in the multi-dimensional open-source CFD code OpenFOAM® are presented. The goal is to perform reliable cold flow LES simulations in complex geometries, such as in the cylinders of internal combustion engines. The implementation of a boundary condition for synthetic turbulence generation upstream of the valve port and of the compressible formulation of the Wall-Adapting Local Eddy-viscosity sgs model (WALE) is described. The WALE model is based on the square of the velocity gradient tensor and it accounts for the effects of both the strain and the rotation rate of the smallest resolved turbulent fluctuations and it recovers the proper y₃ near-wall scaling for the eddy viscosity without requiring dynamic procedure; hence, it is supposed to be a very reliable model for ICE simulation.
Technical Paper

Toothed Couplings for Diesel Engines: An Example of Steel Substitution With Fiber Reinforced Plastics

1996-04-01
91A100
The replacement with plastic of an important component, formerly in steel, in the timing drive of a heavily duty diesel engine has been studied and realized. The substituted part is the toothed coupling connecting the injection pump to the timing drive. Torque that stresses the coupling has been measured with laboratory tests. The tooth stresses have been calculated with FEM analysis. Finally, fatigue tests have been carried out directly on the engine at different loadings. The test results are consistent with the predicted behavior of this component.
Technical Paper

The Air Assisted Direct Injection ELEVATE Automotive Engine Combustion System

2000-06-19
2000-01-1899
The purpose of the ELEVATE (European Low Emission V4 Automotive Two-stroke Engine) industrial research project is to develop a small, compact, light weight, high torque and highly efficient clean gasoline 2-stroke engine of 120 kW which could industrially replace the relatively big existing automotive spark ignition or diesel 4-stroke engine used in the top of the mid size or in the large size vehicles, including the minivan vehicles used for multi people and family transportation. This new gasoline direct injection engine concept is based on the combined implementation on a 4-stroke bottom end of several 2-stroke engine innovative technologies such as the IAPAC compressed air assisted direct fuel injection, the CAI (Controlled Auto-Ignition) combustion process, the D2SC (Dual Delivery Screw SuperCharger) for both low pressure engine scavenging and higher pressure IAPAC air assisted DI and the ETV (Exhaust charge Trapping Valve).
Journal Article

Removal of NOx from Diesel Exhausts: The New “Enhanced NH3-SCR” Reaction

2010-04-12
2010-01-1181
Ammonia/urea-SCR is a mature technology, applied worldwide for the control of NOx emissions in combustion exhausts from thermal power plants, cogeneration units, incinerators and stationary diesel engines and more recently also from mobile sources. However a greater DeNOx activity at low temperatures is desired in order to meet more and more restrictive legislations. In this paper we report transient and steady state data collected over commercial Fe-ZSM-5 and V₂O₅-WO₃/TiO₂ catalysts showing high NOx reduction efficiencies in the 200 - 350°C T-range when NO and ammonia react with nitrates, e.g., in the form of an aqueous solution of ammonium nitrate. Under such conditions a new reaction occurs, the so-called "Enhanced SCR" reaction, 2 NH₃ + 2 NO + NH₄NO₃ → 3 N₂ + 5 H₂O.
Technical Paper

Reduced Kinetic Mechanisms for Diesel Spray Combustion Simulations

2013-09-08
2013-24-0014
Detailed chemistry represents a fundamental pre-requisite for a realistic simulation of combustion process in Diesel engines to properly reproduce ignition delay and flame structure (lift-off and soot precursors) in a wide range of operating conditions. In this work, the authors developed reduced mechanisms for n-dodecane starting from the comprehensive kinetic mechanism developed at Politecnico di Milano, well validated and tested in a wide range of operating conditions [1]. An algorithm combining Sensitivity and Flux Analysis was employed for the present skeletal reduction. The size of the mechanisms can be limited to less than 100 species and incorporates the most important details of low-temperature kinetics for a proper prediction of the ignition delay. Furthermore, the high-temperature chemistry is also properly described both in terms of reactivity and species formation, including unsaturated compounds such as acetylene, whose concentration controls soot formation.
Technical Paper

Progress in Diesel HCCI Combustion Within the European SPACE LIGHT Project

2004-06-08
2004-01-1904
The purpose of the European « SPACE LIGHT » (Whole SPACE combustion for LIGHT duty diesel vehicles) 3-year project launched in 2001 is to research and develop an innovative Homogeneous internal mixture Charged Compression Ignition (HCCI) for passenger cars diesel engine where the combustion process can take place simultaneously in the whole SPACE of the combustion chamber while providing almost no NOx and particulates emissions. This paper presents the whole project with the main R&D tasks necessary to comply with the industrial and technical objectives of the project. The research approach adopted is briefly described. It is then followed by a detailed description of the most recent progress achieved during the tasks recently undertaken. The methodology adopted starts from the research study of the in-cylinder combustion specifications necessary to achieve HCCI combustion from experimental single cylinder engines testing in premixed charged conditions.
Technical Paper

Performance and Exhaust Emissions Analysis of a Diesel Engine Using Oxygen-Enriched Air

2018-09-10
2018-01-1785
Oxygen enriched air (EA) is a well known industrial mixture in which the content of oxygen is higher respect the atmospheric one, in the range 22-35%. Oxygen EA can be obtained by desorption from water, taking advantage of the higher oxygen solubility in water compared to the nitrogen one, since the Henry constants of this two gases are different. The production of EA by this new approach was already studied by experimental runs and theoretical considerations. New results using salt water are reported. EA promoted combustion is considered as one of the most interesting technologies to improve the performance in diesel engines and to simultaneously control and reduce pollution. This paper explores, by means of 3-dimensional computational fluid dynamics simulations, the effects of EA on the performance and exhaust emissions of a high-speed direct-injection diesel engine.
Technical Paper

Parametric Comparison of Well-Mixed and Flamelet n-dodecane Spray Combustion with Engine Experiments at Well Controlled Boundary Conditions

2016-04-05
2016-01-0577
Extensive prior art within the Engine Combustion Network (ECN) using a Bosch single axial-hole injector called ‘Spray A’ in constant-volume vessels has provided a solid foundation from which to evaluate modeling tools relevant to spray combustion. In this paper, a new experiment using a Bosch three-hole nozzle called ‘Spray B’ mounted in a 2.34 L heavy-duty optical engine is compared to sector-mesh engine simulations. Two different approaches are employed to model combustion: the ‘well-mixed model’ considers every cell as a homogeneous reactor and employs multi-zone chemistry to reduce the computational time. The ‘flamelet’ approach represents combustion by an ensemble of laminar diffusion flames evolving in the mixture fraction space and can resolve the influence of mixing, or ‘turbulence-chemistry interactions,’ through the influence of the scalar dissipation rate on combustion.
Technical Paper

Numerical Simulation of the ECN Spray A Using Multidimensional Chemistry Coordinate Mapping: n-Dodecane Diesel Combustion

2012-09-10
2012-01-1660
A three dimensional numerical simulation of the ECN “Spray A” is presented. Both primary and secondary breakup of the spray are included. The fuel is n-Dodecane. The n-Dodecane kinetic mechanism is modeled using a skeletal mechanism that consists of 103 species and 370 reactions [9]. The kinetic mechanism is computationally heavy when coupled with three dimensional numerical simulations. Multidimensional chemistry coordinate mapping (CCM) approach is used to speedup the simulation. CCM involves two-way mapping between CFD cells and a discretized multidimensional thermodynamic space, the so called multidimensional chemistry coordinate space. In the text, the cells in the discretized multidimensional thermodynamic space are called zone to discriminate them from the CFD cells. In this way, the CFD cells which are at the similar thermodynamic state are identified and grouped into a unique zone. The stiff ODEs operates only on the zones containing at least one CFD cell.
Technical Paper

Numerical Optimization of a SCR System Based on the Injection of Pure Gaseous Ammonia for the NOx Reduction in Light-Duty Diesel Engines

2020-04-14
2020-01-0356
Selective Catalytic Reduction (SCR) systems are nowadays widely applied for the reduction of NOx emitted from Diesel engines. The typical process is based on the injection of aqueous urea in the exhaust gases before the SCR catalyst, which determines the production of the ammonia needed for the catalytic reduction of NOx. However, this technology is affected by two main limitations: a) the evaporation of the urea water solution (UWS) requires a sufficiently high temperature of the exhaust gases and b) the formation of solid deposits during the UWS evaporation is a frequent phenomenon which compromise the correct operation of the system. In this context, to overcome these issues, a technology based on the injection of gaseous ammonia has been recently proposed: in this case, ammonia is stored at the solid state in a cartridge containing a Strontium Chloride salt and it is desorbed by means of electrical heating.
Technical Paper

Numerical Investigation on GDI Spray under High Injection Pressure up to 100 MPa

2020-09-15
2020-01-2108
In recent years, the increase of gasoline fuel injection pressure is a way to improve thermal efficiency and lower engine-out emissions in GDI homogenous combustion concept. The challenge of controlling particulate formation as well in mass and number concentrations imposed by emissions regulations can be pursued improving the mixture preparation process and avoiding mixture inhomogeneity with ultra-high injection pressure values up to 100 MPa. The increase of the fuel injection pressure in GDI homogeneous systems meets the demand for increased injector static flow, while simultaneously improves the spray atomization and mixing characteristics with consequent better combustion performance. Few studies quantify the effects of high injection pressure on transient gasoline spray evolution. The aim of this work was to simulate with OpenFOAM the spray morphology of a commercial gasoline injected in a constant volume vessel by a prototypal GDI injector.
Technical Paper

Numerical Investigation of PPCI Combustion at Low and High Charge Stratification Levels

2017-03-28
2017-01-0739
Partially premixed compression ignition combustion is one of the low temperature combustion techniques which is being actively investigated. This approach provides a significant reduction of both soot and NOx emissions. Comparing to the homogeneous charge compression ignition mode, PPCI combustion provides better control on ignition timing and noise reduction through air-fuel mixture stratification which lowers heat release rate compared to other advanced combustion modes. In this work, CFD simulations were conducted for a low and a high air-fuel mixture stratification cases on a light-duty optical engine operating in PPCI mode. Such conditions for PRF70 as fuel were experimentally achieved by injection timing and spray targeting at similar thermodynamic conditions.
Technical Paper

Numerical Estimation of Asymmetry of In-Cylinder Flow in a Light Duty Direct Injection Engine with Re-Entrant Piston Bowl

2017-10-08
2017-01-2209
Partially premixed combustion (PPC) can be applied to decrease emissions and increase fuel efficiency in direct injection, compression ignition (DICI) combustion engines. PPC is strongly influenced by the mixing of fuel and oxidizer, which for a given fuel is controlled mainly by (a) the fuel injection, (b) the in-cylinder flow, and (c) the geometry and dynamics of the engine. As the injection timings can vary over a wide range in PPC combustion, detailed knowledge of the in-cylinder flow over the whole intake and compression strokes can improve our understanding of PPC combustion. In computational fluid dynamics (CFD) the in-cylinder flow is sometimes simplified and modeled as a solid-body rotation profile at some time prior to injection to produce a realistic flow field at the moment of injection. In real engines, the in-cylinder flow motion is governed by the intake manifold, the valve motion, and the engine geometry.
Journal Article

Multi-Dimensional Modeling of the Soot Deposition Mechanism in Diesel Particulate Filters

2008-04-14
2008-01-0444
A computational, three-dimensional approach to investigate the behavior of diesel soot particles in the micro-channels of wall-flow Diesel Particulate Filters is presented. The KIVA3V CFD code, already extended to solve the 2D conservation equations for porous media materials [1], has been enhanced to solve in 2-D and 3-D the governing equations for reacting and compressible flows through porous media in non axes-symmetric geometries. With respect to previous work [1], a different mathematical approach has been followed in the implementation of the numerical solver for porous media, in order to achieve a faster convergency as source terms were added to the governing equations. The Darcy pressure drop has been included in the Navier-Stokes equations and the energy equation has been extended to account for the thermal exchange between the gas flow and the porous wall.
Technical Paper

Multi-Dimensional Modeling of Gas Exchange and Fuel-Air Mixing Processes in a Direct-Injection, Gas Fueled Engine

2011-09-11
2011-24-0036
Direct-injection technology represents today a very interesting solution to the typical problems that are generally encountered in SI, gas-fueled engines such as reduced volumetric efficiency, backfire and knock. However, development of suitable injection systems and combustion chamber geometry is necessary to optimize the fuel-air mixing and combustion processes. To this end, CFD models are widely applied even if the influence of the mesh structure, numerical and turbulence models on the computed results are still matter of investigation. In this work, a numerical methodology for the simulation of the gas exchange and injection processes in gas-fueled engines was developed within the Lib-ICE framework, which is a set of libraries and applications for IC engine modeling developed using the OpenFOAM® technology. The gas exchange and fuel injection processes were simulated into a four-valve, pent-roof hydrogen-fueled engine with optical access.
Technical Paper

Multi-Dimensional Modeling of Combustion in Compression Ignition Engines Operating with Variable Charge Premixing Levels

2011-09-11
2011-24-0027
Premixed combustion modes in compression ignition engines are studied as a promising solution to meet fuel economy and increasingly stringent emissions regulations. Nevertheless, PCCI combustion systems are not yet consolidated enough for practical applications. The high complexity of such combustion systems in terms of both air-fuel charge preparation and combustion process control requires the employment of robust and reliable numerical tools to provide adequate comprehension of the phenomena. Object of this work is the development and validation of suitable models to evaluate the effects of charge premixing levels in diesel combustion. This activity was performed using the Lib-ICE code, which is a set of applications and libraries for IC engine simulations developed using the OpenFOAM® technology.
Technical Paper

Modeling n-dodecane Spray Combustion with a Representative Interactive Linear Eddy Model

2017-03-28
2017-01-0571
Many new combustion concepts are currently being investigated to further improve engines in terms of both efficiency and emissions. Examples include homogeneous charge compression ignition (HCCI), lean stratified premixed combustion, stratified charge compression ignition (SCCI), and high levels of exhaust gas recirculation (EGR) in diesel engines, known as low temperature combustion (LTC). All of these combustion concepts have in common that the temperatures are lower than in traditional spark ignition or diesel engines. To further improve and develop combustion concepts for clean and highly efficient engines, it is necessary to develop new computational tools that can be used to describe and optimize processes in nonstandard conditions, such as low temperature combustion.
Journal Article

Modeling Non-Premixed Combustion Using Tabulated Kinetics and Different Fame Structure Assumptions

2017-03-28
2017-01-0556
Nowadays, detailed kinetics is necessary for a proper estimation of both flame structure and pollutant formation in compression ignition engines. However, large mechanisms and the need to include turbulence/chemistry interaction introduce significant computational overheads. For this reason, tabulated kinetics is employed as a possible solution to reduce the CPU time even if table discretization is generally limited by memory occupation. In this work the authors applied tabulated homogeneous reactors (HR) in combination with different turbulent-chemistry interaction approaches to model non-premixed turbulent combustion. The proposed methodologies represent good compromises between accuracy, required memory and computational time. The experimental validation was carried out by considering both constant-volume vessel and Diesel engine experiments.
X