Refine Your Search

Topic

Search Results

Journal Article

Towards the Use of Eulerian Field PDF Methods for Combustion Modeling in IC Engines

2014-04-01
2014-01-1144
Detailed chemistry and turbulence-chemistry interaction need to be properly taken into account for a realistic combustion simulation of IC engines where advanced combustion modes, multiple injections and stratified combustion involve a wide range of combustion regimes and require a proper description of several phenomena such as auto-ignition, flame stabilization, diffusive combustion and lean premixed flame propagation. To this end, different approaches are applied and the most used ones rely on the well-stirred reactor or flamelet assumption. However, well-mixed models do not describe correctly flame structure, while unsteady flamelet models cannot easily predict premixed flame propagation and triple flames. A possible alternative for them is represented by transported probability density functions (PDF) methods, which have been applied widely and effectively for modeling turbulent reacting flows under a wide range of combustion regimes.
Journal Article

Tire Ply-Steer, Conicity and Rolling Resistance - Analytical Formulae for Accurate Assessment of Vehicle Performance during Straight Running

2019-04-02
2019-01-1237
The aim of the paper is to provide simple and accurate analytical formulae describing the straight motion of a road vehicle. Such formulae can be used to compute either the steering torque or the additional rolling resistance induced by vehicle side-slip angle. The paper introduces a revised formulation of the Handling Diagram Theory to take into account tire ply-steer, conicity and road banking. Pacejka’s Handling Diagram Theory is based on a relatively simple fully non-linear single track model. We will refer to the linear part of the Handling Diagram, since straight motion will be considered only. Both the elastokinematics of suspension system and tire characteristics are taken into account. The validation of the analytical expressions has been performed both theoretically and after a subjective-objective test campaign. By means of the new and unreferenced analytical formulae, practical hints are given to set to zero the steering torque during straight running.
Journal Article

Numerical and Experimental Investigation on Vehicles in Platoon

2012-04-16
2012-01-0175
Many studies have been carried out to optimize the aerodynamic performances of a single car or a single vehicle. In present days the traffic increases and sophisticated technologies are developing to guarantee the drivers safety, to minimize the fuel consumption and be more environmentally friendly. Within this research area a new technique that is being studied is Platooning: this means that different vehicles travel in a configuration that minimizes the aerodynamic drag and therefore the fuel consumption and the longitudinal space. In the present study platoons with different vehicles and configurations are taken into account, to analyze the influence of car shape and relative distance between the vehicles. The research has been carried out using CFD techniques to investigate the different flow fields around different platoons, while wind tunnel tests have been used to validate the results of the CFD simulations.
Technical Paper

Numerical and Experimental Investigation on Passive Prechamber Configurations Able to Operate at Low Engine Speed and Load

2023-08-28
2023-24-0031
Turbulent Jet Ignition (TJI) represents one of the most effective solution to improve engine efficiency and to reduce fuel consumption and pollutants emission. Even if active prechambers allow a precise control of the air-fuel ratio close to the spark plug and the ignition of ultra-lean mixtures in the main chamber, passive prechambers represent a more attractive solution especially for passenger cars thanks to their simpler and cheaper configuration, which is easier to integrate into existing engines. The main challenge of passive prechambers is to find a geometry that allows to use TJI in the whole engine map, especially in the low load/speed region, without the use of a second sparkplug in the main chamber. To this end, this works reports a CFD study coupled with an experimental investigation to overcome this limitation.
Journal Article

Numerical Investigation of Non-Reacting and Reacting Diesel Sprays in Constant-Volume Vessels

2009-06-15
2009-01-1971
A numerical investigation on a series of Diesel spray experiments in constant-volume vessels is proposed. Non reacting conditions were used to assess the spray models and to determine the grid size required to correctly predict the fuel-air mixture formation process. To this end, not only computed liquid and vapor penetrations were compared with experimental data, but also a detailed comparison between computed and experimental mixture fraction distributions was performed at different distances from the injector. Grid dependency was reduced by introducing an Adaptive Local Mesh Refinement technique (ALMR) with an arbitrary level of refinement. Once the capabilities of the current implemented spray models have been assessed, reacting conditions at different ambient densities and temperatures were considered. A Perfectly Stirred Reactor (PSR) combustion model, based on a direct integration of complex chemistry mechanisms over a homogenous cell, was adopted.
Technical Paper

Novel Framework for the Robust Optimization of the Heat Flux Distribution for an Electro-Thermal Ice Protection System and Airfoil Performance Analysis

2023-06-15
2023-01-1392
We present a framework for the robust optimization of the heat flux distribution for an anti-ice electro-thermal ice protection system (AI-ETIPS) and iced airfoil performance analysis under uncertain conditions. The considered uncertainty regards a lack of knowledge concerning the characteristics of the cloud i.e. the liquid water content and the median volume diameter of water droplets, and the accuracy of measuring devices i.e., the static temperature probe, uncertain parameters are modeled as uniform random variables. A forward uncertainty propagation analysis is carried out using a Monte Carlo approach. The optimization framework relies on a gradient-free algorithm (Mesh Adaptive Direct Search) and three different problem formulations are considered in this work. Two bi-objective deterministic optimizations aim to minimize power consumption and either minimize ice formations or the iced airfoil drag coefficient.
Technical Paper

Modeling Ignition and Premixed Combustion Including Flame Stretch Effects

2017-03-28
2017-01-0553
Objective of this work is the incorporation of the flame stretch effects in an Eulerian-Lagrangian model for premixed SI combustion in order to describe ignition and flame propagation under highly inhomogeneous flow conditions. To this end, effects of energy transfer from electrical circuit and turbulent flame propagation were fully decoupled. The first ones are taken into account by Lagrangian particles whose main purpose is to generate an initial burned field in the computational domain. Turbulent flame development is instead considered only in the Eulerian gas phase for a better description of the local flow effects. To improve the model predictive capabilities, flame stretch effects were introduced in the turbulent combustion model by using formulations coming from the asymptotic theory and recently verified by means of DNS studies. Experiments carried out at Michigan Tech University in a pressurized, constant-volume vessel were used to validate the proposed approach.
Technical Paper

Modeling Fuel-Air Mixing, Combustion and Soot Formation with Ducted Fuel Injection Using Tabulated Kinetics

2022-03-29
2022-01-0403
Ducted Fuel Injection (DFI) has the potential to reduce soot emissions in Diesel engines thanks to the enhanced mixing rate resulting from the liquid fuel flow through a small cylindrical pipe located at a certain distance from the nozzle injector hole. A consolidated set of experiments in constant-volume vessel and engine allowed to understand the effects of ambient conditions, duct geometry and shape on fuel-air mixing, combustion and soot formation. However, implementation of this promising technology in compression-ignition engines requires predictive numerical models that can properly support the design of combustion systems in a wide range of operating conditions. This work presents a computational methodology to predict fuel-air mixing and combustion with ducted fuel injection. Attention is mainly focused on turbulence and combustion modelling.
Technical Paper

Influence of Cylindrical, k, and ks Diesel Nozzle Shape on the Injector Internal Flow Field and on the Emerging Spray Characteristics

2014-04-01
2014-01-1428
Today, multi-hole Diesel injectors can be mainly characterized by three different nozzle hole shapes: cylindrical, k-hole, and ks-hole. The nozzle hole layout plays a direct influence on the injector internal flow field characteristics and, in particular, on the cavitation and turbulence evolution over the hole length. In turn, the changes on the injector internal flow correlated to the nozzle shape produce immediate effects on the emerging spray. In the present paper, the fluid dynamic performance of three different Diesel nozzle hole shapes are evaluated: cylindrical, k-hole, and ks-hole. The ks-hole geometry was experimentally characterized in order to find out its real internal shape. First, the three nozzle shapes were studied by a fully transient CFD multiphase simulation to understand their differences in the internal flow field evolutions. In detail, the attention was focused on the turbulence and cavitation levels at hole exit.
Technical Paper

Identification of Agricultural Tyres' Handling Characteristics from Full Vehicle Experimental Tests

2014-04-01
2014-01-0874
For passenger cars, individual tyre model parameters, used in vehicle models able to simulate vehicle handling behavior, are traditionally derived from expensive component indoor laboratory tests as a result of an identification procedure minimizing the error with respect to force and slip measurements. Indoor experiments on agricultural tyres are instead more challenging and thus generally not performed due to tyre size and applied forces. However, the knowledge of their handling characteristics is becoming more and more important since in the next few years, all agricultural vehicles are expected to run on ordinary asphalt roads at a speed of 80km/h. The present paper presents a methodology to identify agricultural tyres' handling characteristics based only on the measurements carried out on board vehicle (vehicle sideslip angle, yaw rate, lateral acceleration, speed and steer angle) during standard handling maneuvers (step-steers, J-turns, etc.), instead than during indoor tests.
Technical Paper

Hybrid URANS/LES Turbulence Modeling for Spray Simulation: A Computational Study

2019-04-02
2019-01-0270
Turbulence modeling for fuel spray simulation plays a prominent role in the understanding of the flow behavior in Internal Combustion Engines (ICEs). Currently, a lot of research work is actively spent on Large Eddy Simulation (LES) turbulence modeling as a replacement option of standard Reynolds averaged approaches in the Eulerian-Lagrangian spray modeling framework, due to its capability to accurately describe flow-induced spray variability and to the lower dependence of the results on the specific turbulence model and/or modeling coefficients. The introduction of LES poses, however, additional questions related to the implementation/adaptation of spray-related turbulence sources and to the rise of conflicting numerics and grid requirements between the Lagrangian and Eulerian parts of the simulated flow.
Journal Article

Geometric and Fluid-Dynamic Characterization of Actual Open Cell Foam Samples by a Novel Imaging Analysis Based Algorithm

2017-10-05
2017-01-9288
Metallic open-cell foams have proven to be valuable for many engineering applications. Their success is mainly related to mechanical strength, low density, high specific surface, good thermal exchange, low flow resistance and sound absorption properties. The present work aims to investigate three principal aspects of real foams: the geometrical characterization, the flow regime characterization, the effects of the pore size and the porosity on the pressure drop. The first aspect is very important, since the geometrical properties depend on other parameters, such as porosity, cell/pore size and specific surface. A statistical evaluation of the cell size of a foam sample is necessary to define both its geometrical characteristics and the flow pattern at a given input velocity. To this purpose, a procedure which statistically computes the number of cells and pores with a given size has been implemented in order to obtain the diameter distribution.
Technical Paper

Effects of Turbulence Modulation Addition in OpenFOAM® Toolkit on High Pressure Fuel Sprays

2011-04-12
2011-01-0820
The OpenFOAM® CFD methodology is nowadays employed for simulation in internal combustion engines and a lot of work has been done for an appropriate description of all complex phenomena. At the moment in the RANS turbulence models available in the OpenFOAM® toolbox the turbulence modulation is not yet included, and the present work analyzes the predictive capabilities of the code in simulating high injection pressure fuel sprays after modeling the influence of the dispersed phase on the turbulence structure. Different experiments were employed for the validation. At first, non-evaporating diesel spray was considered in a constant volume and quiescent vessel. The validation was performed via the available experimental spray evolution in terms of penetrations and spatial/temporal fuel distributions. Then the Sandia combustion chamber was chosen for diesel spray simulation in non-reacting conditions.
Journal Article

Dynamic Response of Vehicle-Driver Couple to the Aerodynamic Loads due to the Crossing of a Bridge Tower Wake

2012-04-16
2012-01-0214
In the paper, a procedure to assess the quality of the shielding effect of wind barriers to protect large sided vehicles crossing the wake of a bridge pylon under cross wind conditions is proposed. The methodology is based on Multi-Body simulations of the response of the vehicle-driver system when it is subjected to the sudden change of the aerodynamic forces due to the wind-tower interaction. The aerodynamic forces that are instantaneously acting on the vehicle are computed according to a force distribution approach that relies on wind tunnel tests that may be performed on still scaled models. From the knowledge of the aerodynamic force distribution along the vehicle at different yaw angles and of the mean wind profile across the tower wake, the aerodynamic force, acting on the moving vehicle, is reconstructed at each time step taking into consideration the actual vehicle-driver dynamics.
Technical Paper

Development and Validation of SI Combustion Models for Natural-Gas Heavy-Duty Engines

2019-09-09
2019-24-0096
Flexible, reliable and consistent combustion models are necessary for the improvement of the next generation spark-ignition engines. Different approaches have been proposed and widely applied in the past. However, the complexity of the process involving ignition, laminar flame propagation and transition to turbulent combustion need further investigations. Purpose of this paper is to compare two different approaches describing turbulent flame propagation. The first is the one-equation flame wrinkling model by Weller, while the second is the Coherent Flamelet Model (CFM). Ignition is described by a simplified deposition model while the correlation from Herweg and Maly is used for the transition from the laminar to turbulent flame propagation. Validation of the proposed models was performed with experimental data of a natural-gas, heavy duty engine running at different operating conditions.
Technical Paper

Development and Application of S.I. Combustion Models for Emissions Prediction

2006-04-03
2006-01-1108
The s.i. combustion process and its corresponding pollutant formation are investigated by means of a quasiD approach and a CFD model. This work has been motivated by the need to better understand the reliability of such models and to assess their accuracies with respect to the prediction of engine performances and emissions. An extended dissertation about the fundamental mechanisms governing the pollutant formation in the turbulent premixed combustion which characterizes the s.i. engines is given. The conclusion of such analysis is the definition of a new reduced chemical scheme, based on the application of partial-equilibrium and steady-state assumptions for the radicals and the solution of a transport equation for each specie which is kinetically controlled. For this purpose the CFD code OpenFOAM [1, 2, 3] and the thermo-fluid dynamic code GASDYN [4, 5] have been applied and enhanced.
Journal Article

Detailed Kinetic Analysis of HCCI Combustion Using a New Multi-Zone Model and CFD Simulations

2013-09-08
2013-24-0021
A new multi-zone model for the simulation of HCCI engine is here presented. The model includes laminar and turbulent diffusion and conduction exchange between the zones and the last improvements on the numerical aspects. Furthermore, a new strategy for the zone discretization is presented, which allows a better description of the near-wall zones. The aim of the work is to provide a fast and reliable model for carrying out chemical analysis with detailed kinetic schemes. A preliminary sensitivity analysis allows to verify that 10 zones are a convenient number for a good compromise between the computational effort and the description accuracy. The multi-zone predictions are then compared with the CFD ones to find the effective turbulence parameters, with the aim to describe the near-wall phenomena, both in a reactive and non-reactive cases.
Journal Article

Design of Catalytic Devices by Means of Genetic Algorithm: Comparison Between Open-Cell Foam and Honeycomb Type Substrates

2016-04-05
2016-01-0965
Metallic foams or sponges are materials with a cell structure suitable for many industrial applications, such as reformers, heat catalytic converters, etc. The success of these materials is due to the combination of various characteristics such as mechanical strength, low density, high specific surface, good thermal exchange properties, low flow resistance and sound absorption. Different materials and manufacturing processes produce different type of structure and properties for various applications. In this work a genetic algorithm has been developed and applied to support the design of catalytic devices. In particular, two substrates were considered, namely the traditional honeycomb and an alternative open-cell foam type. CFD simulations of pressure losses and literature based correlations for the heat and mass transfer were used to support the genetic algorithm in finding the best compromise between flow resistance and pollutant abatement.
Technical Paper

Automatic Mech Generation for Full-Cycle CFD Modeling of IC Engines: Application to the TCC Test Case

2014-04-01
2014-01-1131
The definition of a robust methodology to perform a full-cycle CFD simulation of IC engines requires as first step the availability of a reliable grid generation tool, which does not only have to guarantee a high quality mesh but also has to prove to be efficient in terms of required time. In this work the authors discuss a novel approach entirely based on the OpenFOAM technology, in which the available 3D grid generator was employed to automatically create meshes containing hexahedra and split-hexahedra from triangulated surface geometries in Stereolithography (STL) format. The possibility to introduce local refinements and boundary layers makes this tool suitable for IC engine simulations. Grids are sequentially generated at target crank angles which are automatically determined depending on user specified settings such as maximum mesh validity interval and quality parameters like non-orthogonality, skewness and aspect ratio.
Technical Paper

Assessment of Actuator Line and Rotor Disk as Alternative Approaches for the Numerical Simulation of Rotating Wheels

2023-04-11
2023-01-0844
Wheel and wheelhouses contribute up to 20-30% of the aerodynamic drag of passenger cars. Simulating the flow field around wheels is challenging due to the complexity of the flow structures generated by tires and rims, wheel rotation, tire deformation and contact with the ground. High accuracy is usually obtained with transient simulations that treat rim rotation with the Sliding Mesh (SM) approach, which is also computationally expensive. Previous studies have confirmed that the application of a tangential velocity component to the rim surface is unphysical for open rims, while a Moving Reference Frame (MRF) is lacking accuracy and the averaged results depend on the initial spokes position. These methods do not consider the dynamic nature of the problem. This work proposes the use of the Actuator Line (AL) and Rotor Disk (RD) approaches as alternatives for simulating open rims with much lower computational cost.
X