Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

ℒ1 Adaptive Flutter Suppression Control Strategy for Highly Flexible Structure

2013-09-17
2013-01-2263
The aim of this work is to apply an innovative adaptive ℒ1 techniques to control flutter phenomena affecting highly flexible wings and to evaluate the efficiency of this control algorithm and architecture by performing the following tasks: i) adaptation and analysis of an existing simplified nonlinear plunging/pitching 2D aeroelastic model accounting for structural nonlinearities and a quasi-steady aerodynamics capable of describing flutter and post-flutter limit cycle oscillations, ii) implement the ℒ1 adaptive control on the developed aeroelastic system to perform initial control testing and evaluate the sensitivity to system parameters, and iii) perform model validation and calibration by comparing the performance of the proposed control strategy with an adaptive back-stepping algorithm. The effectiveness and robustness of the ℒ1 adaptive control in flutter and post-flutter suppression is demonstrated.
Technical Paper

Water Injection Contribution to Enabling Stoichiometric Air-to-Fuel Ratio Operation at Rated Power Conditions of a High-Performance DISI Single Cylinder Engine

2019-09-09
2019-24-0173
The next generation of gasoline turbo-charged engines will have to deal with the continuous tightening of emissions regulations. In fact, to better represent real-world emission figures, WLTP and RDE cycles focus on stricter criteria; spanning higher speeds and loads potentially covering the whole engine operating map. It is common practice at present to use overfueling to avoid catastrophic failure of turbine and aftertreatment systems at very high engine speeds and loads due to excessive temperatures. A past technology, which is presently enjoying a resurgence of interest, is water injection. In particular, for high-specific-power applications, this could be used as replacement strategy for overfueling, potentially enabling full operating range stoichiometric operation with no compromise in terms of maximum performance with respect to today.
Technical Paper

Virtual and Experimental Analysis of Brake Assist Systems

2006-04-03
2006-01-0477
The paper deals with the virtual and experimental analysis of two commercial Mechanical Brake Assist systems. They are described in detail, then modeled and experimentally evaluated through a Hardware-In-the-Loop test bench and road tests. Three different kinds of drivers are compared, from the point of view of the performance increase promised by Brake Assist during an emergency brake maneuver. The three driver types are based on the measurement of the behavior of real drivers, as it is presented in specific research activities in literature.
Technical Paper

Virtual Simulation for Clutch Thermal Behavior Prediction

2018-05-30
2018-37-0021
The clutch is that mechanical part located in an internal combustion engine vehicle which allows the torque transmission from the shaft to the wheels, permitting at the same time gear shifting and supporting engine revolutions while the car is idling. This component exploits friction as working principle, therefore heat generation is in its own nature. The comprehension of all the critical issues related to thermal emission, and also of the principal physical parameters driving the phenomena are a must in design phases. The subject of this paper is the elaboration of an accurate, but also easy to use and easily replicable, methodology to simulate thermal behavior of a clutch operating inside its usual environment. The present methodology allows to prevent corrective actions in the last phase of the projects (real testing), such as changes in gear ratios, that likely worsen CO2 emissions, permitting to achieve the wished thermal performance of the clutch avoiding late changes.
Technical Paper

Vehicle Side Slip and Roll Angle Estimation

2016-04-05
2016-01-1654
Vehicle dynamics estimation has been the subject of study for some years now. If on-board vehicle control systems can be provided with information such as side slip angle, lateral force etc. then stability of the vehicle can be improved. To estimate these dynamic variables different observers have been used e.g., sliding mode, fuzzy logic, neural networks etc. In this article the authors propose an extended Kalman filter to estimate vehicle side slip angle. Roll angle is estimated using vertical loads as input. First, a linear Kalman filter is used to filter out the vertical forces and estimate roll angle. This information is then used to estimate the vehicle side slip angle. To take into account the nonlinearities concerning lateral vehicle dynamics, Pacejka magic formula is used to model lateral forces. Estimated results are then compared with simulations, showing good accuracy.
Technical Paper

Vehicle Mass Estimation from CAN Data and Drivetrain Torque Observer

2017-03-28
2017-01-1590
A method for estimating the vehicle mass in real time is presented. Traditional mass estimation methods suffer due a lack of knowledge of the vehicle parameters, the road surface conditions and most importantly the effect of the vehicle transmission. To resolve these issues, a method independent of a vehicle model is utilized in conjunction with a drivetrain output torque observer to obtain the estimate of the vehicle mass. Simulations and experimental track tests indicate that the method is able to accurately estimate the vehicle mass with a relatively fast rate of convergence compared to traditional methods.
Technical Paper

Vehicle Dynamics Simulation to Develop an Active Roll Control System

2007-04-16
2007-01-0828
Active Roll Control (ARC) is one of the most promising active systems to improve vehicle comfort and handling. This paper describes the simulation based procedure adopted to conceive a double-channel Active Roll Control system, characterized by the hydraulic actuation of the stabilizer bars of a sedan. The first part of the paper presents the vehicle model adopted for this activity. It is Base Model Simulator (BMS), the 14 Degrees-of-Freedom vehicle model by Politecnico di Torino. It was validated through road tests. Then the paper describes the development of the control algorithm adopted to improve the roll dynamics of the vehicle. The implemented control algorithm is characterized by a first subsystem, capable of obtaining the desired values of body roll angle as a function of lateral acceleration during semi-stationary maneuvers.
Technical Paper

Vehicle Driveability: Dynamic Analysis of Powertrain System Components

2016-04-05
2016-01-1124
The term driveability describes the driver's complex subjective perception of the interactions with the vehicle. One of them is associated to longitudinal acceleration aspects. A relevant contribution to the driveability optimization process is, nowadays, realized by means of track tests during which a considerable amount of driveline parameters are tuned in order to obtain a good compromise of longitudinal acceleration response. Unfortunately, this process is carried out at a development stage when a design iteration becomes too expensive. In addition, the actual trend of downsizing and supercharging the engines leads to higher vibrations that are transmitted to the vehicle. A large effort is therefore dedicated to develop, test and implement ignition strategies addressed to minimize the torque irregularities. Such strategies could penalize the engine maximum performance, efficiency and emissions. The introduction of the dual mass flywheel is beneficial to this end.
Technical Paper

Turbocharging system selection for a hydrogen-fuelled spark-ignition internal combustion engine for heavy-duty applications

2024-07-02
2024-01-3019
Nowadays, green hydrogen can play a crucial role in a successful clean energy transition, thus reaching net zero emissions in the transport sector. Moreover, hydrogen exploitation in internal combustion engines is favoured by its suitable combustion properties and quasi-zero harmful emissions. High flame speeds enable a lean combustion approach, which provides high efficiency and reduces NOx emissions. However, high air flow rates are required to achieve the load levels typical of heavy-duty applications. In this framework, the present study aims to investigate the required boosting system of a 6-cylinder, 13-liter heavy-duty spark ignition engine through 1D numerical simulation. A comparison among various architectures of the turbocharging system and the size of each component is presented, thus highlighting limitations and potentialities of each architecture and providing important insights for the selection of the best turbocharging system.
Technical Paper

The Impact of WLTP on the Official Fuel Consumption and Electric Range of Plug-in Hybrid Electric Vehicles in Europe

2017-09-04
2017-24-0133
Plug-in Hybrid Electric Vehicles (PHEVs) are one of the main technology options for reducing vehicle CO2 emissions and helping vehicle manufacturers (OEMs) to meet the CO2 targets set by different Governments from all around the world. In Europe OEMs have introduced a number of PHEV models to meet their CO2 target of 95 g/km for passenger cars set for the year 2021. Fuel consumption (FC) and CO2 emissions from PHEVs, however, strongly depend on the way they are used and on the frequency with which their battery is charged by the user. Studies have indeed revealed that in real life, with poor charging behavior from users, PHEV FC is equivalent to that of conventional vehicles, and in some cases higher, due to the increased mass and the need to keep the battery at a certain charging level.
Journal Article

The Effects of Neat Biodiesel Usage on Performance and Exhaust Emissions from a Small Displacement Passenger Car Diesel Engine

2010-05-05
2010-01-1515
The effects of using neat FAME (Fatty Acid Methyl Ester) in a modern small displacement passenger car diesel engine have been evaluated in this paper. In particular the effects on engine performance at full load with standard (i.e., without any special tuning) ECU calibration were analyzed, highlighting some issues in the low end torque due to the lower exhaust gas temperatures at the turbine inlet, which caused a remarkable decrease of the available boost, with a substantial decrease of the engine torque output, far beyond the expected engine derating due to the lower LHV of the fuel. However, further tests carried out after ECU recalibration, showed that the same torque levels measured under diesel operation can be obtained with neat biodiesel too, thus highlighting the potential for maintaining the same level of performance.
Technical Paper

The Effect of Post Injection Coupled with Extremely High Injection Pressure on Combustion Process and Emission Formation in an Off-Road Diesel Engine: A Numerical and Experimental Investigation

2019-09-09
2019-24-0092
In this paper, a numerical and experimental assessment of post injection potential for soot emissions mitigation in an off-road diesel engine is presented, with the aim of supporting hardware selection and engine calibration processes. As a case study, a prototype off-road 3.4 liters 4-cylinder diesel engine developed by Kohler Engines was selected. In order to explore the possibility to comply with Stage V emission standards without a dedicated aftertreatment for NOx, the engine was equipped with a low pressure cooled Exhaust Gas Recirculation (EGR), allowing high EGR rates (above 30%) even at high load. To enable the exploitation of such high EGR rates with acceptable soot penalties, a two-stage turbocharger and an extremely high-pressure fuel injection system (up to 3000 bar) were adopted. Moreover, post injections events were also exploited to further mitigate soot emissions with acceptable Brake Specific Fuel Consumption (BSFC) penalties.
Technical Paper

The Diesel Exhaust Aftertreatment (DEXA) Cluster: A Systematic Approach to Diesel Particulate Emission Control in Europe

2004-03-08
2004-01-0694
The DEXA Cluster consisted of three closely interlinked projects. In 2003 the DEXA Cluster concluded by demonstrating the successful development of critical technologies for Diesel exhaust particulate after-treatment, without adverse effects on NOx emissions and maintaining the fuel economy advantages of the Diesel engine well beyond the EURO IV (2000) emission standards horizon. In the present paper the most important results of the DEXA Cluster projects in the demonstration of advanced particulate control technologies, the development of a simulation toolkit for the design of diesel exhaust after-treatment systems and the development of novel particulate characterization methodologies, are presented. The motivation for the DEXA Cluster research was to increase the market competitiveness of diesel engine powertrains for passenger cars worldwide, and to accelerate the adoption of particulate control technology.
Technical Paper

Test Bench for Static Transmission Error Evaluation in Gears

2020-04-14
2020-01-1324
In this paper a test bench for measuring the Static Transmission Error of two mating gears is presented and a comparison with the results obtained with the commercial software GeDy TrAss is shown. Static Transmission Error is considered as the main source of overloads and Noise, Vibration and Harshness issues in mechanical transmissions. It is defined as the difference between the theoretical angular position of two gears under load in quasi-static conditions and the real one. This parameter strictly depends on the applied torque and the tooth macro and micro-geometry. The test bench illustrated in this work is designed to evaluate the actual Static Transmission Error of two gears under load in quasi-static conditions. In particular, this testbed can be divided in two macro elements: the first one is the mechanism composed by weights and pulleys that generates a driving and a braking torque up to 500 Nm.
Technical Paper

Supercar Hybridization: A Synergic Path to Reduce Fuel Consumption and Improve Performance

2018-05-30
2018-37-0009
The trend towards powertrain electrification is expected to grow significantly in the next future also for super-cars. The aim of this paper is therefore to assess, through numerical simulation, the impact on both fuel economy and performance of different 48 Volt mild hybrid architectures for a high-performance sport car featuring a Turbocharged Direct Injection Spark Ignition (TDISI) engine. In particular the hybrid functionalities of both a P0 (Belt Alternator Starter - BAS) and a P2 (Flywheel Alternator Starter - FAS) architecture were investigated and optimized for this kind of application through a global optimization algorithm. The analysis pointed out CO2 emission reductions potential of about 6% and 25% on NEDC, 7% and 28% on WLTC for P0 and P2 respectively. From the performance perspective, a 10% reduction in the time-to-torque was highlighted for both architectures in a load step maneuver at 2000 RPM constant speed.
Technical Paper

Structural and Aerodynamics Analysis on Different Architectures for the Elettra Twin Flyer Prototype

2009-11-10
2009-01-3128
This paper deals with the design and development of an innovative airship concept which is remotely-controlled and intended to be used for monitoring, surveillance, exploration and reconnaissance missions. Two potential solutions have been analyzed: the first consists of a double-hull configuration, characterized by the presence of a primary support structure connected by appropriated bindings to a couple of twin inflatable hulls. The second architecture is a soap-shaped exoskeleton configuration which features a single inflated section, incorporating two separate elements held internally by a system of ribs. The aim of this study is to analyze and compare the two configurations, to determine the most appropriate solution in terms of performance, cost and maneuvering capabilities
Technical Paper

Speed and Acceleration Impact on Pollutant Emissions

1996-05-01
961113
This paper intends to analyze the simultaneous impact of speed and acceleration on exhaust pollutant emissions. For this purpose, actual driving recording were used. Kinematic sequences were randomly selected amongst the recorded data, in order to constitute a representative set of driving conditions. For each sequence, average levels of speed and positive acceleration were calculated. Instantaneous and integrated pollutant emissions were calculated using an existing emission model, developed for calculating pollutant emissions and fuel consumption as functions of instantaneous speed and acceleration. This model is based on instantaneous emission measurements on a chassis dynamometer using actual driving cycles, over a sample of 150 European cars. Emissions of CO, CO2, HC, NOx were analyzed considering the average speed and positive acceleration, for different categories of vehicles Diesel, conventional and catalyst vehicles.
Technical Paper

Sensitivity Analysis of the Design Parameters of a Dual-Clutch Transmission Focused on NVH Performance

2016-04-05
2016-01-1127
This paper presents a methodology for the assessment of the NVH (noise vibration and harshness) performance of Dual Clutch Transmissions (DCTs) depending on some transmission design parameters, e.g. torsional backlash in the synchronizers or clutch disc moment of inertia, during low speed maneuvers. A 21-DOFs nonlinear dynamic model of a C-segment passenger car equipped with a DCT is used to simulate the torsional behavior of the driveline and to estimate the forces at the bearings. The impacts between the teeth of two engaging components, e.g. gears and synchronizers, generate impulses in the forces, thus loading the bearings with force time-history characterized by rich frequency content. A broadband excitation is therefore applied to the gearbox case, generating noise and vibration issues.
Technical Paper

Reduction in Pollutant Emissions in an “Off-Road” DI Diesel Engine by Means of Exhaust Gas Recirculation

2011-11-08
2011-32-0610
The aim of this work was to obtain a reduction in pollutant emissions, in particular for NOx and Soot, in an “Off-Road” DI Diesel Engine, equipped with a common rail injection system, by means of exhaust gas recirculation (EGR). First, an engine simulation was performed using a one-dimensional code, and the model was then calibrated with experimental results obtained from a previous research work conducted on bench tests. Thanks to the engine model, specific emissions were then determined in all conditions, that is, in “eight modes” pertaining to engine loads and speeds. Both the injection advance and EGR amount were changed for all of these conditions in order to obtain the best compromise between fuel consumption and emissions and to respect standard regulations. The investigation was performed using both the Wiebe and a more complex combustion models; this latter allows in fact to determine the soot emission through the Nagle-Strickland model.
Technical Paper

Real Time Modelling of Automotive Electric Drives for Hardware-in-the-Loop Applications

2023-08-28
2023-24-0028
The current electrification trend involving hybrid and electric vehicles requires accurate tools to evaluate performance and reliability of electric powertrains’ control systems. Thanks to Hardware in the Loop (HiL) technique, verification, validation and virtual calibration of Electronic Control Systems can be performed without physical plants, addressing the need of frontloading, cost and time reduction of new vehicles control systems development. However, HiL applications with power electronics controllers brings several concerns due to the extremely low timestep needed for accurate simulation of electromagnetic phenomena, making FPGA-based simulation the only option. Moreover, thermal aspects of electric motors are very important from the control perspective as complex thermal management control strategies are implemented to improve the efficiency and to prevent overheating that can cause permanent damage to the electrical machine.
X