Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

ℒ1 Adaptive Flutter Suppression Control Strategy for Highly Flexible Structure

2013-09-17
2013-01-2263
The aim of this work is to apply an innovative adaptive ℒ1 techniques to control flutter phenomena affecting highly flexible wings and to evaluate the efficiency of this control algorithm and architecture by performing the following tasks: i) adaptation and analysis of an existing simplified nonlinear plunging/pitching 2D aeroelastic model accounting for structural nonlinearities and a quasi-steady aerodynamics capable of describing flutter and post-flutter limit cycle oscillations, ii) implement the ℒ1 adaptive control on the developed aeroelastic system to perform initial control testing and evaluate the sensitivity to system parameters, and iii) perform model validation and calibration by comparing the performance of the proposed control strategy with an adaptive back-stepping algorithm. The effectiveness and robustness of the ℒ1 adaptive control in flutter and post-flutter suppression is demonstrated.
Technical Paper

Virtual and Experimental Analysis of Brake Assist Systems

2006-04-03
2006-01-0477
The paper deals with the virtual and experimental analysis of two commercial Mechanical Brake Assist systems. They are described in detail, then modeled and experimentally evaluated through a Hardware-In-the-Loop test bench and road tests. Three different kinds of drivers are compared, from the point of view of the performance increase promised by Brake Assist during an emergency brake maneuver. The three driver types are based on the measurement of the behavior of real drivers, as it is presented in specific research activities in literature.
Technical Paper

Virtual Simulation for Clutch Thermal Behavior Prediction

2018-05-30
2018-37-0021
The clutch is that mechanical part located in an internal combustion engine vehicle which allows the torque transmission from the shaft to the wheels, permitting at the same time gear shifting and supporting engine revolutions while the car is idling. This component exploits friction as working principle, therefore heat generation is in its own nature. The comprehension of all the critical issues related to thermal emission, and also of the principal physical parameters driving the phenomena are a must in design phases. The subject of this paper is the elaboration of an accurate, but also easy to use and easily replicable, methodology to simulate thermal behavior of a clutch operating inside its usual environment. The present methodology allows to prevent corrective actions in the last phase of the projects (real testing), such as changes in gear ratios, that likely worsen CO2 emissions, permitting to achieve the wished thermal performance of the clutch avoiding late changes.
Technical Paper

Virtual Set-up of a Racing Engine for the Optimization of Lap Performance through a Comprehensive Engine-Vehicle-Driver Model

2011-09-11
2011-24-0141
In Motorsports the understanding of the real engine performance within a complete circuit lap is a crucial topic. On the basis of the telemetry data the engineers are able to monitor this performance and try to adapt the engine to the vehicle's and race track's characteristics and driver's needs. However, quite often the telemetry is the sole analysis instrument for the Engine-Vehicle-Driver (EVD) system and it has no prediction capability. The engine optimization for best lap-time or best fuel economy is therefore a topic which is not trivial to solve, without the aid of suitable, reliable and predictive engineering tools. A complete EVD model was therefore built in a GT-SUITE™ environment for a Motorsport racing car (STCC-VW-Scirocco) equipped with a Compressed Natural Gas (CNG) turbocharged S.I. engine and calibrated on the basis of telemetry and test bench data.
Technical Paper

Vehicle Side Slip and Roll Angle Estimation

2016-04-05
2016-01-1654
Vehicle dynamics estimation has been the subject of study for some years now. If on-board vehicle control systems can be provided with information such as side slip angle, lateral force etc. then stability of the vehicle can be improved. To estimate these dynamic variables different observers have been used e.g., sliding mode, fuzzy logic, neural networks etc. In this article the authors propose an extended Kalman filter to estimate vehicle side slip angle. Roll angle is estimated using vertical loads as input. First, a linear Kalman filter is used to filter out the vertical forces and estimate roll angle. This information is then used to estimate the vehicle side slip angle. To take into account the nonlinearities concerning lateral vehicle dynamics, Pacejka magic formula is used to model lateral forces. Estimated results are then compared with simulations, showing good accuracy.
Technical Paper

Vehicle Mass Estimation from CAN Data and Drivetrain Torque Observer

2017-03-28
2017-01-1590
A method for estimating the vehicle mass in real time is presented. Traditional mass estimation methods suffer due a lack of knowledge of the vehicle parameters, the road surface conditions and most importantly the effect of the vehicle transmission. To resolve these issues, a method independent of a vehicle model is utilized in conjunction with a drivetrain output torque observer to obtain the estimate of the vehicle mass. Simulations and experimental track tests indicate that the method is able to accurately estimate the vehicle mass with a relatively fast rate of convergence compared to traditional methods.
Technical Paper

Vehicle Dynamics Simulation to Develop an Active Roll Control System

2007-04-16
2007-01-0828
Active Roll Control (ARC) is one of the most promising active systems to improve vehicle comfort and handling. This paper describes the simulation based procedure adopted to conceive a double-channel Active Roll Control system, characterized by the hydraulic actuation of the stabilizer bars of a sedan. The first part of the paper presents the vehicle model adopted for this activity. It is Base Model Simulator (BMS), the 14 Degrees-of-Freedom vehicle model by Politecnico di Torino. It was validated through road tests. Then the paper describes the development of the control algorithm adopted to improve the roll dynamics of the vehicle. The implemented control algorithm is characterized by a first subsystem, capable of obtaining the desired values of body roll angle as a function of lateral acceleration during semi-stationary maneuvers.
Technical Paper

Vehicle Driveability: Dynamic Analysis of Powertrain System Components

2016-04-05
2016-01-1124
The term driveability describes the driver's complex subjective perception of the interactions with the vehicle. One of them is associated to longitudinal acceleration aspects. A relevant contribution to the driveability optimization process is, nowadays, realized by means of track tests during which a considerable amount of driveline parameters are tuned in order to obtain a good compromise of longitudinal acceleration response. Unfortunately, this process is carried out at a development stage when a design iteration becomes too expensive. In addition, the actual trend of downsizing and supercharging the engines leads to higher vibrations that are transmitted to the vehicle. A large effort is therefore dedicated to develop, test and implement ignition strategies addressed to minimize the torque irregularities. Such strategies could penalize the engine maximum performance, efficiency and emissions. The introduction of the dual mass flywheel is beneficial to this end.
Journal Article

Use of an Innovative Predictive Heat Release Model Combined to a 1D Fluid-Dynamic Model for the Simulation of a Heavy Duty Diesel Engine

2013-09-08
2013-24-0012
An innovative 0D predictive combustion model for the simulation of the HRR (heat release rate) in DI diesel engines was assessed and implemented in a 1D fluid-dynamic commercial code for the simulation of a Fiat heavy duty diesel engine equipped with a Variable Geometry Turbocharger system, in the frame of the CORE (CO2 reduction for long distance transport) Collaborative Project of the European Community, VII FP. The 0D combustion approach starts from the calculation of the injection rate profile on the basis of the injected fuel quantities and on the injection parameters, such as the start of injection and the energizing time, taking the injector opening and closure delays into account. The injection rate profile in turn allows the released chemical energy to be estimated. The approach assumes that HRR is proportional to the energy associated with the accumulated fuel mass in the combustion chamber.
Technical Paper

Turbocharging system selection for a hydrogen-fuelled spark-ignition internal combustion engine for heavy-duty applications

2024-07-02
2024-01-3019
Nowadays, green hydrogen can play a crucial role in a successful clean energy transition, thus reaching net zero emissions in the transport sector. Moreover, hydrogen exploitation in internal combustion engines is favoured by its suitable combustion properties and quasi-zero harmful emissions. High flame speeds enable a lean combustion approach, which provides high efficiency and reduces NOx emissions. However, high air flow rates are required to achieve the load levels typical of heavy-duty applications. In this framework, the present study aims to investigate the required boosting system of a 6-cylinder, 13-liter heavy-duty spark ignition engine through 1D numerical simulation. A comparison among various architectures of the turbocharging system and the size of each component is presented, thus highlighting limitations and potentialities of each architecture and providing important insights for the selection of the best turbocharging system.
Journal Article

Theoretical and Experimental Flutter Predictions in High Aspect Ratio Composite Wings

2011-10-18
2011-01-2722
Next generation of composite civil aircrafts and unconventional configurations, such as High Altitude Long Endurance HALE-UAV, exhibit aeroelastic instabilities quite different from their rigid counterparts. Consequently, one has to deal with phenomena not usually considered in classical aircraft design. Alternative design criteria are needed in order to maintain the safety levels imposed by the regulations and required for certification. The A2-Net-Team project aims to build a multi-disciplinary network of researchers with complementary expertise to develop analytical methods used for a better understanding and assessment of the factors contributing to the occurrence of critical aeroservoelastic instabilities. Along with modeling and numerical investigations a test article will also provide the opportunity to modify and calibrate theoretical models, to highlight and explore their limits, to recommend the necessary modifications and future pertinent investigations.
Technical Paper

The Impact of WLTP on the Official Fuel Consumption and Electric Range of Plug-in Hybrid Electric Vehicles in Europe

2017-09-04
2017-24-0133
Plug-in Hybrid Electric Vehicles (PHEVs) are one of the main technology options for reducing vehicle CO2 emissions and helping vehicle manufacturers (OEMs) to meet the CO2 targets set by different Governments from all around the world. In Europe OEMs have introduced a number of PHEV models to meet their CO2 target of 95 g/km for passenger cars set for the year 2021. Fuel consumption (FC) and CO2 emissions from PHEVs, however, strongly depend on the way they are used and on the frequency with which their battery is charged by the user. Studies have indeed revealed that in real life, with poor charging behavior from users, PHEV FC is equivalent to that of conventional vehicles, and in some cases higher, due to the increased mass and the need to keep the battery at a certain charging level.
Technical Paper

Test Bench for Static Transmission Error Evaluation in Gears

2020-04-14
2020-01-1324
In this paper a test bench for measuring the Static Transmission Error of two mating gears is presented and a comparison with the results obtained with the commercial software GeDy TrAss is shown. Static Transmission Error is considered as the main source of overloads and Noise, Vibration and Harshness issues in mechanical transmissions. It is defined as the difference between the theoretical angular position of two gears under load in quasi-static conditions and the real one. This parameter strictly depends on the applied torque and the tooth macro and micro-geometry. The test bench illustrated in this work is designed to evaluate the actual Static Transmission Error of two gears under load in quasi-static conditions. In particular, this testbed can be divided in two macro elements: the first one is the mechanism composed by weights and pulleys that generates a driving and a braking torque up to 500 Nm.
Technical Paper

Supercar Hybridization: A Synergic Path to Reduce Fuel Consumption and Improve Performance

2018-05-30
2018-37-0009
The trend towards powertrain electrification is expected to grow significantly in the next future also for super-cars. The aim of this paper is therefore to assess, through numerical simulation, the impact on both fuel economy and performance of different 48 Volt mild hybrid architectures for a high-performance sport car featuring a Turbocharged Direct Injection Spark Ignition (TDISI) engine. In particular the hybrid functionalities of both a P0 (Belt Alternator Starter - BAS) and a P2 (Flywheel Alternator Starter - FAS) architecture were investigated and optimized for this kind of application through a global optimization algorithm. The analysis pointed out CO2 emission reductions potential of about 6% and 25% on NEDC, 7% and 28% on WLTC for P0 and P2 respectively. From the performance perspective, a 10% reduction in the time-to-torque was highlighted for both architectures in a load step maneuver at 2000 RPM constant speed.
Technical Paper

Structural and Aerodynamics Analysis on Different Architectures for the Elettra Twin Flyer Prototype

2009-11-10
2009-01-3128
This paper deals with the design and development of an innovative airship concept which is remotely-controlled and intended to be used for monitoring, surveillance, exploration and reconnaissance missions. Two potential solutions have been analyzed: the first consists of a double-hull configuration, characterized by the presence of a primary support structure connected by appropriated bindings to a couple of twin inflatable hulls. The second architecture is a soap-shaped exoskeleton configuration which features a single inflated section, incorporating two separate elements held internally by a system of ribs. The aim of this study is to analyze and compare the two configurations, to determine the most appropriate solution in terms of performance, cost and maneuvering capabilities
Technical Paper

Steering Feedback Torque Definition and Generation in a Steer by Wire System

2008-04-14
2008-01-0498
Steer by wire (SbW) system is examined, considering the positive effects of the lack of direct mechanical connection between steering wheel and rack. SbW system's steering wheel has to generate a resistant torque which adds to the friction one. Such torque must be felt as natural by the average driver and carry information about vehicle dynamic condition. System prototype is obtained from a classical steering system. Steering wheel is linked to a brushless 12V DC current electric motor designed to develop resistance torque, after steering column is removed, triple stadium planetary gear is necessary to increase the torque output. A hardware in the loop test bench is realized in order to test feedback torque generation and steering wheel efficiency influence on vehicle behaviour. Steering wheel is fixed to the bench and its rotation acquired by an optic encoder. Steering wheel angle is used as input for a ten degrees of freedom vehicle model through an acquisition data board.
Technical Paper

Steering Behavior of an Articulated Amphibious All-Terrain Tracked Vehicle

2020-04-14
2020-01-0996
This paper presents a study related to an Articulated Amphibious All-Terrain Tracked Vehicle (ATV) characterized by a modular architecture. The ATV is composed by two modules: the first one hosts mainly the vehicle engine and powertrain components, meanwhile the second one can be used for goods transportation, personnel carrier, crane and so on. The engine torque is transmitted to the front axle sprocket wheel of each module and finally distributed on the ground through a track mechanism. The two modules are connected through a multiaxial joint designed to guarantee four relative degrees of freedom. To steer the ATV, an Electro Hydraulic Power System (EHPS) is adopted, thus letting the vehicle steerable on any kind of terrain without a differential tracks speed. The paper aims to analyze the steady-state lateral behavior of the ATV on a flat road, through a non-linear mathematical vehicle model built in Matlab/Simulink environment.
Journal Article

Sideslip Angle Estimation of a Formula SAE Racing Vehicle

2016-04-05
2016-01-1662
A method for estimating the sideslip angle of a Formula SAE vehicle with torque vectoring is presented. Torque vectoring introduces large tire longitudinal forces which lead to a reduction of the tire lateral forces. A novel tire model is utilized to represent this reduction of the lateral forces. The estimation is realized using an extended Kalman filter which takes in standard sensor measurements. The developed algorithm is tested by simulating slalom and figure eight maneuvers on a validated VI-CarRealTime vehicle model. Results indicate that the algorithm is able to estimate the sideslip angle of the vehicle reliably on a high friction surface track.
Technical Paper

Shock Absorber Modeling and Experimental Testing

2007-04-16
2007-01-0855
Simulation is becoming the fundamental tool to design the main components of a vehicle. The paper describes the shock absorber model which was implemented by the Vehicle Dynamics Research Team of Politecnico di Torino. It is a modular model which can be adopted both for mono-tube and twin-tube shock absorbers. It can be used at different levels of approximation, as a function of the kind of user and his/her targets. The main data which have to be inserted in the model are fluid properties, the basic dimensions of the component and the characteristics of the orifices of the shock absorber. An experimental test bench was conceived to obtain the diagrams plotting flow rate through an orifice of a shock absorber versus the pressure drop between input and output ports. The test rig and the procedure to perform the experimental tests and insert the results in the shock absorber model are described in detail.
Technical Paper

Sensitivity Analysis of the Design Parameters of a Dual-Clutch Transmission Focused on NVH Performance

2016-04-05
2016-01-1127
This paper presents a methodology for the assessment of the NVH (noise vibration and harshness) performance of Dual Clutch Transmissions (DCTs) depending on some transmission design parameters, e.g. torsional backlash in the synchronizers or clutch disc moment of inertia, during low speed maneuvers. A 21-DOFs nonlinear dynamic model of a C-segment passenger car equipped with a DCT is used to simulate the torsional behavior of the driveline and to estimate the forces at the bearings. The impacts between the teeth of two engaging components, e.g. gears and synchronizers, generate impulses in the forces, thus loading the bearings with force time-history characterized by rich frequency content. A broadband excitation is therefore applied to the gearbox case, generating noise and vibration issues.
X