Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Set-up of a Racing Engine for the Optimization of Lap Performance through a Comprehensive Engine-Vehicle-Driver Model

2011-09-11
2011-24-0141
In Motorsports the understanding of the real engine performance within a complete circuit lap is a crucial topic. On the basis of the telemetry data the engineers are able to monitor this performance and try to adapt the engine to the vehicle's and race track's characteristics and driver's needs. However, quite often the telemetry is the sole analysis instrument for the Engine-Vehicle-Driver (EVD) system and it has no prediction capability. The engine optimization for best lap-time or best fuel economy is therefore a topic which is not trivial to solve, without the aid of suitable, reliable and predictive engineering tools. A complete EVD model was therefore built in a GT-SUITE™ environment for a Motorsport racing car (STCC-VW-Scirocco) equipped with a Compressed Natural Gas (CNG) turbocharged S.I. engine and calibrated on the basis of telemetry and test bench data.
Technical Paper

Vehicle Side Slip and Roll Angle Estimation

2016-04-05
2016-01-1654
Vehicle dynamics estimation has been the subject of study for some years now. If on-board vehicle control systems can be provided with information such as side slip angle, lateral force etc. then stability of the vehicle can be improved. To estimate these dynamic variables different observers have been used e.g., sliding mode, fuzzy logic, neural networks etc. In this article the authors propose an extended Kalman filter to estimate vehicle side slip angle. Roll angle is estimated using vertical loads as input. First, a linear Kalman filter is used to filter out the vertical forces and estimate roll angle. This information is then used to estimate the vehicle side slip angle. To take into account the nonlinearities concerning lateral vehicle dynamics, Pacejka magic formula is used to model lateral forces. Estimated results are then compared with simulations, showing good accuracy.
Technical Paper

Vehicle Dynamics Simulation to Develop an Active Roll Control System

2007-04-16
2007-01-0828
Active Roll Control (ARC) is one of the most promising active systems to improve vehicle comfort and handling. This paper describes the simulation based procedure adopted to conceive a double-channel Active Roll Control system, characterized by the hydraulic actuation of the stabilizer bars of a sedan. The first part of the paper presents the vehicle model adopted for this activity. It is Base Model Simulator (BMS), the 14 Degrees-of-Freedom vehicle model by Politecnico di Torino. It was validated through road tests. Then the paper describes the development of the control algorithm adopted to improve the roll dynamics of the vehicle. The implemented control algorithm is characterized by a first subsystem, capable of obtaining the desired values of body roll angle as a function of lateral acceleration during semi-stationary maneuvers.
Journal Article

Sideslip Angle Estimation of a Formula SAE Racing Vehicle

2016-04-05
2016-01-1662
A method for estimating the sideslip angle of a Formula SAE vehicle with torque vectoring is presented. Torque vectoring introduces large tire longitudinal forces which lead to a reduction of the tire lateral forces. A novel tire model is utilized to represent this reduction of the lateral forces. The estimation is realized using an extended Kalman filter which takes in standard sensor measurements. The developed algorithm is tested by simulating slalom and figure eight maneuvers on a validated VI-CarRealTime vehicle model. Results indicate that the algorithm is able to estimate the sideslip angle of the vehicle reliably on a high friction surface track.
Technical Paper

Shock Absorber Modeling and Experimental Testing

2007-04-16
2007-01-0855
Simulation is becoming the fundamental tool to design the main components of a vehicle. The paper describes the shock absorber model which was implemented by the Vehicle Dynamics Research Team of Politecnico di Torino. It is a modular model which can be adopted both for mono-tube and twin-tube shock absorbers. It can be used at different levels of approximation, as a function of the kind of user and his/her targets. The main data which have to be inserted in the model are fluid properties, the basic dimensions of the component and the characteristics of the orifices of the shock absorber. An experimental test bench was conceived to obtain the diagrams plotting flow rate through an orifice of a shock absorber versus the pressure drop between input and output ports. The test rig and the procedure to perform the experimental tests and insert the results in the shock absorber model are described in detail.
Technical Paper

Road to Virtual Tuning: New Physical Lump Model and Test Protocol to Support Damper Tuning in Hyundai Motor Europe Technical Center

2019-04-02
2019-01-0855
Vehicle dynamics is a fundamental part of vehicle performance. It combines functional requirements (i.e. road safety) with emotional content (“fun to drive”, “comfort”): this balance is what characterizes the car manufacturer (OEM) driving DNA. To reach the customer requirements on Ride & Handling, integration of CAE and testing is mandatory. Beside of cutting costs and time, simulation helps to break down vehicle requirements to component level. On chassis, the damper is the most important component, contributing to define the character of the vehicle, and it is defined late, during tuning, mainly by experienced drivers. Usually 1D lookup tables Force vs. Velocity, generated from tests like the standard VDA, are not able to describe the full behavior of the damper: different dampers display the same Force vs. Velocity curve but they can give different feeling to the driver.
Technical Paper

Racing Simulation of a Formula 1 Vehicle with Kinetic Energy Recovery System

2008-12-02
2008-01-2964
This paper deals with the development of a Lap Time Simulator in order to carry out a first approximate evaluation of the potential benefits related to the adoption of the Kinetic Energy Recovery System (KERS). KERS will be introduced in the 2009 Formula 1 Season. This system will be able to store energy during braking and then use it in order to supply an extra acceleration during traction. Different technologies (e.g. electrical, hydraulic and mechanical) could be applied in order to achieve this target. The lap time simulator developed by the authors permits to investigate the advantages both in terms of fuel consumption reduction and the improvement of the lap time.
Technical Paper

Performance Optimization for the XAM Hybrid Electric Vehicle Prototype

2012-04-16
2012-01-0773
Given the ever-increasing concern about environmental issues, the automotive industry is focusing on the development of innovative technologies that allow reduction of gas emissions and fuel consumption. Over the last few years, Hybrid Electric Vehicles (HEV) and Fuel Cell Vehicles have been developed as the most promising alternative solutions for many car manufacturers. Although fuel cells are considered as the best technology to have zero emission, the impact on infrastructure for a large-scale deployment is not yet solved. For this reason, HEV represent a valid shorter-term alternative that guarantees drastic emissions reduction and reduced fuel consumption with a much lower infrastructural impact. This paper reports the results obtained by the optimization of the emissions and fuel performances of a hybrid electric city vehicle for urban transportation named XAM (eXtreme Automotive Mobility). In order to optimize these performances, a 1D model of the vehicle has been created.
Journal Article

Optimization of Electrified Powertrains for City Cars

2012-06-01
2011-01-2451
Sustainable and energy-efficient consumption is a main concern in contemporary society. Driven by more stringent international requirements, automobile manufacturers have shifted the focus of development into new technologies such as Hybrid Electric Vehicles (HEVs). These powertrains offer significant improvements in the efficiency of the propulsion system compared to conventional vehicles, but they also lead to higher complexities in the design process and in the control strategy. In order to obtain an optimum powertrain configuration, each component has to be laid out considering the best powertrain efficiency. With such a perspective, a simulation study was performed for the purpose of minimizing well-to-wheel CO2 emissions of a city car through electrification. Three different innovative systems, a Series Hybrid Electric Vehicle (SHEV), a Mixed Hybrid Electric Vehicle (MHEV) and a Battery Electric Vehicle (BEV) were compared to a conventional one.
Technical Paper

OPTIBODY: A New Structural Design Focused in Safety

2013-11-27
2013-01-2760
With electric vehicles becoming more and more popular, the classic “general purpose” vehicle concept is changing to a “dedicated vehicle” concept. Light trucks for goods delivery in cities are one of the examples. The European vehicle category L7e fits perfectly in the low power, low weight vehicle requirements for an electric light truck for goods delivery. However, the safety requirements of this vehicle category are very low and their occupants are highly exposed to injuries in the event of a collision. The European Commission co-funded project OPTIBODY (Optimized Structural components and add-ons to improve passive safety in new Electric Light Trucks and Vans) is developing a new structural concept based on a chassis, a cabin a several add-ons. The add-ons will provide improved protection in case of frontal, side and rear impact.
Technical Paper

Numerical Simulation to Improve Engine Control During Tip-In Manoeuvres

2003-03-03
2003-01-0374
The potential of numerical simulation in the analysis of the dynamic transient response of a vehicle during tip-in manoeuvres has been evaluated. The dynamic behavior of the driveline of a typical European gasoline car was analyzed under a sharp throttle input. A one-dimensional fluid dynamic model of the engine was realized for the simulation of the input torque; afterwards, it was coupled with a driveline and vehicle model implemented in Matlab-Simulink environment. After a detailed validation process based on several sets of experimental data, the engine and vehicle coupled simulation was used to evaluate different control strategies during tip-in manoeuvres aiming to enhance the vehicle driveability.
Technical Paper

Nonlinear Slender Beam-Wise Schemes for Structural Behavior of Flexible UAS Wings

2015-09-15
2015-01-2462
The innovative highly flexible wings made of extremely light structures, yet still capable of carrying a considerable amount of non- structural weights, requires significant effort in structural simulations. The complexity involved in such design demands for simplified mathematical tools based on appropriate nonlinear structural schemes combined with reduced order models capable of predicting accurately their aero-structural behaviour. The model presented in this paper is based on a consistent nonlinear beam-wise scheme, capable of simulating the unconventional aeroelastic behaviour of flexible composite wings. The partial differential equations describing the wing dynamics are expanded up to the third order and can be used to explore the effect of static deflection imposed by external trim, the effect of gust loads and the one of nonlinear aerodynamic stall.
Technical Paper

Multi-body Versus Block-Oriented Approach in Suspension Dynamics of a Military Tracked Tank

2009-04-20
2009-01-0443
The superior mobility of a military vehicle provides the combat crew with a tactical advantage through increased cross country speed. The suspension system plays a fundamental role in evaluating a vehicle mobility. A mathematical model that allows realistic simulations of vehicles operating in a wide spectrum of environmental conditions may help to lower costs and time required during their development. The paper concerns with vehicle-terrain interaction modeling, for a military tracked tank, through multi-body and block-oriented approaches. It is focused on the consequences that the suspension system has got on the comfort and on the performance. Thus through a multi-body software a realistic three dimensional model of a tracked fighting vehicle is developed. This virtual model confirms some experimental data available on its longitudinal dynamics. In order to simplify the multi-body simulations, a block-oriented approach is adopted to develop a model of the same vehicle.
Journal Article

Model-Based Control of BMEP and NOx Emissions in a Euro VI 3.0L Diesel Engine

2017-09-04
2017-24-0057
A model-based approach to control BMEP (Brake Mean Effective Pressure) and NOx emissions has been developed and assessed on a FPT F1C 3.0L Euro VI diesel engine for heavy-duty applications. The controller is based on a zero-dimensional real-time combustion model, which is capable of simulating the HRR (heat release rate), in-cylinder pressure, BMEP and NOx engine-out levels. The real-time combustion model has been realized by integrating and improving previously developed simulation tools. A new discretization scheme has been developed for the model equations, in order to reduce the accuracy loss when the computational step is increased. This has allowed the required computational time to be reduced to a great extent.
Technical Paper

Linear Approach to ESP Control Logic Design

2006-04-03
2006-01-1017
An Electronic Stability Program (ESP) control logic is designed. It is devoted to stabilize vehicle during cornering maneuvers. The aim of the activity is to obtain a feed forward (FF) control structure, capable of better performance than a previously developed closed loop one. The efficiency of ESP intervention is determined observing yaw rate peak reduction and oscillation damping time during step steer maneuver, together with vehicle side slip angle containment and longitudinal speed loss. A single track vehicle model is used to obtain two transfer functions describing vehicle and active system behavior. A third transfer function is derived from active vehicle frequency response that is the designer's target. The interaction between the transfer functions permits to design a feed forward control logic, which is then merged in a closed loop control structure in order to ensure fail safe conditions and control robustness.
Technical Paper

Improvement of Lap-Time of a Rear Wheel Drive Electric Racing Vehicle by a Novel Motor Torque Control Strategy

2017-03-28
2017-01-0509
This paper presents a novel strategy for the control of the motor torques of a rear wheel drive electric vehicle with the objective of improving the lap time of the vehicle around a racetrack. The control strategy is based upon increasing the size of the friction circle by implementing torque vectoring and tire slip control. A two-level nested control strategy is used for the motor torque control. While the outer level is responsible for computing the desired corrective torque vectoring yaw moment, the inner level controls the motor torques to realize the desired corrective torque vectoring yaw moment while simultaneously controlling the wheel longitudinal slip. The performance of the developed controller is analyzed by simulating laps around a racetrack with a non-linear multi-body vehicle model and a professional human racing driver controller setting.
Technical Paper

Improved Multibody Model of Flexible Wing

2013-09-17
2013-01-2265
In the development of High Altitude Long Endurance (HALE) UAVs and their control the flexibility of the wing must be taken into account. The wing of this type of UAVs, usually made of highly flexible composite materials, has high aspect ratio with significant bending-torsional deformation during flight. The NASA Helios, as an example, has tragically shown that wing deformation coupled with control and power operation can cause serious problem in flight, instability can suddenly occur and can be quite difficult to foresee. In this paper the mathematical description of a flexible wing multibody model is presented. It is suitable to simulate the effect of both structural flexibility and flight dynamics and maneuvering on the wing deformation, and can be used to help developing control strategies for air vehicles with highly deformable wings.
Technical Paper

Gearbox Paradigm: A Support for Quick and Effective Gearbox Design

2019-04-02
2019-01-0806
The complexity of automotive market, the request of new gearbox layout able to improve the efficiency of a vehicle and the requirement of quick and effective design of gearboxes push the designers to seek new technologies, new layouts, new solutions. The typical development of a gearbox requires a lot of time and engineers' effort and it often implies a lot of time to define the right layout. The idea of developing a "paradigm" able to guide the designer through the design process seems to be effective. Starting from the experience of a code called "Engine Paradigm" where such idea was firstly implemented, the authors propose in the present paper the development of a code able to suggest a first attempt design of a gearbox. The "Gearbox Paradigm" code requires few data introduction, as torque, power, number of gears, some geometrical constraints such as the axes gap the gearbox layout, and the code elaborates a proposal of CAD design of a gearbox.
Technical Paper

Experimental and Theoretical Car Flow Investigation

1986-03-01
860213
During the past few years substantial advances have been made in reducing the drag of automobiles. Future improvements are becoming increasingly difficult to achieve; for this reason more-advanced flow investigation methods are required. This paper shows some results of flow analysis performed using two methods. The first is experimental and is based on car-wake flow surveying; the second is computational and is based on inviscid flow calculations simply corrected for viscous effects. The two methods may be usefully combined.
Technical Paper

Experimental Investigation on a 3D Wing Section Hosting Multiple SJAs for Stall Control Purpose

2015-09-15
2015-01-2453
Flow control over aerodynamic shapes in order to achieve performance enhancements has been a lively research area for last two decades. Synthetic Jet Actuators (SJAs) are devices able to interact actively with the flow around their hosting structure by providing ejection and suction of fluid from the enclosed cavity containing a piezo-electric oscillating membrane through dedicated orifices. The research presented in this paper concerns the implementation of zero-net-mass-flux SJAs airflow control system on a NACA0015, low aspect ratio wing section prototype. Two arrays with each 10 custom-made SJAs, installed at 10% and 65% of the chord length, make up the actuation system. The sensing system consists of eleven acoustic pressure transducers distributed in the wing upper surface and on the flap, an accelerometer placed in proximity of the wing c.g. and a six-axis force balance for integral load measurement.
X