Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Water Injection Contribution to Enabling Stoichiometric Air-to-Fuel Ratio Operation at Rated Power Conditions of a High-Performance DISI Single Cylinder Engine

2019-09-09
2019-24-0173
The next generation of gasoline turbo-charged engines will have to deal with the continuous tightening of emissions regulations. In fact, to better represent real-world emission figures, WLTP and RDE cycles focus on stricter criteria; spanning higher speeds and loads potentially covering the whole engine operating map. It is common practice at present to use overfueling to avoid catastrophic failure of turbine and aftertreatment systems at very high engine speeds and loads due to excessive temperatures. A past technology, which is presently enjoying a resurgence of interest, is water injection. In particular, for high-specific-power applications, this could be used as replacement strategy for overfueling, potentially enabling full operating range stoichiometric operation with no compromise in terms of maximum performance with respect to today.
Technical Paper

Virtual Simulation for Clutch Thermal Behavior Prediction

2018-05-30
2018-37-0021
The clutch is that mechanical part located in an internal combustion engine vehicle which allows the torque transmission from the shaft to the wheels, permitting at the same time gear shifting and supporting engine revolutions while the car is idling. This component exploits friction as working principle, therefore heat generation is in its own nature. The comprehension of all the critical issues related to thermal emission, and also of the principal physical parameters driving the phenomena are a must in design phases. The subject of this paper is the elaboration of an accurate, but also easy to use and easily replicable, methodology to simulate thermal behavior of a clutch operating inside its usual environment. The present methodology allows to prevent corrective actions in the last phase of the projects (real testing), such as changes in gear ratios, that likely worsen CO2 emissions, permitting to achieve the wished thermal performance of the clutch avoiding late changes.
Technical Paper

Virtual Set-up of a Racing Engine for the Optimization of Lap Performance through a Comprehensive Engine-Vehicle-Driver Model

2011-09-11
2011-24-0141
In Motorsports the understanding of the real engine performance within a complete circuit lap is a crucial topic. On the basis of the telemetry data the engineers are able to monitor this performance and try to adapt the engine to the vehicle's and race track's characteristics and driver's needs. However, quite often the telemetry is the sole analysis instrument for the Engine-Vehicle-Driver (EVD) system and it has no prediction capability. The engine optimization for best lap-time or best fuel economy is therefore a topic which is not trivial to solve, without the aid of suitable, reliable and predictive engineering tools. A complete EVD model was therefore built in a GT-SUITE™ environment for a Motorsport racing car (STCC-VW-Scirocco) equipped with a Compressed Natural Gas (CNG) turbocharged S.I. engine and calibrated on the basis of telemetry and test bench data.
Technical Paper

Vehicle Side Slip and Roll Angle Estimation

2016-04-05
2016-01-1654
Vehicle dynamics estimation has been the subject of study for some years now. If on-board vehicle control systems can be provided with information such as side slip angle, lateral force etc. then stability of the vehicle can be improved. To estimate these dynamic variables different observers have been used e.g., sliding mode, fuzzy logic, neural networks etc. In this article the authors propose an extended Kalman filter to estimate vehicle side slip angle. Roll angle is estimated using vertical loads as input. First, a linear Kalman filter is used to filter out the vertical forces and estimate roll angle. This information is then used to estimate the vehicle side slip angle. To take into account the nonlinearities concerning lateral vehicle dynamics, Pacejka magic formula is used to model lateral forces. Estimated results are then compared with simulations, showing good accuracy.
Technical Paper

Vehicle Dynamics Simulation to Develop an Active Roll Control System

2007-04-16
2007-01-0828
Active Roll Control (ARC) is one of the most promising active systems to improve vehicle comfort and handling. This paper describes the simulation based procedure adopted to conceive a double-channel Active Roll Control system, characterized by the hydraulic actuation of the stabilizer bars of a sedan. The first part of the paper presents the vehicle model adopted for this activity. It is Base Model Simulator (BMS), the 14 Degrees-of-Freedom vehicle model by Politecnico di Torino. It was validated through road tests. Then the paper describes the development of the control algorithm adopted to improve the roll dynamics of the vehicle. The implemented control algorithm is characterized by a first subsystem, capable of obtaining the desired values of body roll angle as a function of lateral acceleration during semi-stationary maneuvers.
Technical Paper

Turbocharging system selection for a hydrogen-fuelled spark-ignition internal combustion engine for heavy-duty applications

2024-07-02
2024-01-3019
Nowadays, green hydrogen can play a crucial role in a successful clean energy transition, thus reaching net zero emissions in the transport sector. Moreover, hydrogen exploitation in internal combustion engines is favoured by its suitable combustion properties and quasi-zero harmful emissions. High flame speeds enable a lean combustion approach, which provides high efficiency and reduces NOx emissions. However, high air flow rates are required to achieve the load levels typical of heavy-duty applications. In this framework, the present study aims to investigate the required boosting system of a 6-cylinder, 13-liter heavy-duty spark ignition engine through 1D numerical simulation. A comparison among various architectures of the turbocharging system and the size of each component is presented, thus highlighting limitations and potentialities of each architecture and providing important insights for the selection of the best turbocharging system.
Technical Paper

The Potential of Electric Exhaust Gas Turbocharging for HD Diesel Engines

2006-04-03
2006-01-0437
The potential of an electric assisted turbocharger for a heavy-duty diesel engine has been analyzed in this work, in order to evaluate the turbo-lag reductions and the fuel consumption savings that could be obtained in an urban bus for different operating conditions. The aim of the research project was to replace the current variable geometry turbine with a fixed geometry turbine, connecting an electric machine which can be operated both as an electric motor and as an electric generator to the turbo shaft. The electric motor can be used to speed up the turbocharger during the acceleration transients and reduce the turbo-lag, while the generator can be used to recover the excess exhaust energy when the engine is operated near the rated speed, in order to produce electrical power that can be used to drive engine auxiliaries. In this way the engine efficiency can be improved and a kind of “electric turbocompounding” can be obtained.
Technical Paper

The Impact of WLTP on the Official Fuel Consumption and Electric Range of Plug-in Hybrid Electric Vehicles in Europe

2017-09-04
2017-24-0133
Plug-in Hybrid Electric Vehicles (PHEVs) are one of the main technology options for reducing vehicle CO2 emissions and helping vehicle manufacturers (OEMs) to meet the CO2 targets set by different Governments from all around the world. In Europe OEMs have introduced a number of PHEV models to meet their CO2 target of 95 g/km for passenger cars set for the year 2021. Fuel consumption (FC) and CO2 emissions from PHEVs, however, strongly depend on the way they are used and on the frequency with which their battery is charged by the user. Studies have indeed revealed that in real life, with poor charging behavior from users, PHEV FC is equivalent to that of conventional vehicles, and in some cases higher, due to the increased mass and the need to keep the battery at a certain charging level.
Journal Article

The Effects of Neat Biodiesel Usage on Performance and Exhaust Emissions from a Small Displacement Passenger Car Diesel Engine

2010-05-05
2010-01-1515
The effects of using neat FAME (Fatty Acid Methyl Ester) in a modern small displacement passenger car diesel engine have been evaluated in this paper. In particular the effects on engine performance at full load with standard (i.e., without any special tuning) ECU calibration were analyzed, highlighting some issues in the low end torque due to the lower exhaust gas temperatures at the turbine inlet, which caused a remarkable decrease of the available boost, with a substantial decrease of the engine torque output, far beyond the expected engine derating due to the lower LHV of the fuel. However, further tests carried out after ECU recalibration, showed that the same torque levels measured under diesel operation can be obtained with neat biodiesel too, thus highlighting the potential for maintaining the same level of performance.
Technical Paper

The Effect of Post Injection Coupled with Extremely High Injection Pressure on Combustion Process and Emission Formation in an Off-Road Diesel Engine: A Numerical and Experimental Investigation

2019-09-09
2019-24-0092
In this paper, a numerical and experimental assessment of post injection potential for soot emissions mitigation in an off-road diesel engine is presented, with the aim of supporting hardware selection and engine calibration processes. As a case study, a prototype off-road 3.4 liters 4-cylinder diesel engine developed by Kohler Engines was selected. In order to explore the possibility to comply with Stage V emission standards without a dedicated aftertreatment for NOx, the engine was equipped with a low pressure cooled Exhaust Gas Recirculation (EGR), allowing high EGR rates (above 30%) even at high load. To enable the exploitation of such high EGR rates with acceptable soot penalties, a two-stage turbocharger and an extremely high-pressure fuel injection system (up to 3000 bar) were adopted. Moreover, post injections events were also exploited to further mitigate soot emissions with acceptable Brake Specific Fuel Consumption (BSFC) penalties.
Technical Paper

The Diesel Exhaust Aftertreatment (DEXA) Cluster: A Systematic Approach to Diesel Particulate Emission Control in Europe

2004-03-08
2004-01-0694
The DEXA Cluster consisted of three closely interlinked projects. In 2003 the DEXA Cluster concluded by demonstrating the successful development of critical technologies for Diesel exhaust particulate after-treatment, without adverse effects on NOx emissions and maintaining the fuel economy advantages of the Diesel engine well beyond the EURO IV (2000) emission standards horizon. In the present paper the most important results of the DEXA Cluster projects in the demonstration of advanced particulate control technologies, the development of a simulation toolkit for the design of diesel exhaust after-treatment systems and the development of novel particulate characterization methodologies, are presented. The motivation for the DEXA Cluster research was to increase the market competitiveness of diesel engine powertrains for passenger cars worldwide, and to accelerate the adoption of particulate control technology.
Technical Paper

Structural and Aerodynamics Analysis on Different Architectures for the Elettra Twin Flyer Prototype

2009-11-10
2009-01-3128
This paper deals with the design and development of an innovative airship concept which is remotely-controlled and intended to be used for monitoring, surveillance, exploration and reconnaissance missions. Two potential solutions have been analyzed: the first consists of a double-hull configuration, characterized by the presence of a primary support structure connected by appropriated bindings to a couple of twin inflatable hulls. The second architecture is a soap-shaped exoskeleton configuration which features a single inflated section, incorporating two separate elements held internally by a system of ribs. The aim of this study is to analyze and compare the two configurations, to determine the most appropriate solution in terms of performance, cost and maneuvering capabilities
Technical Paper

Steering Behavior of an Articulated Amphibious All-Terrain Tracked Vehicle

2020-04-14
2020-01-0996
This paper presents a study related to an Articulated Amphibious All-Terrain Tracked Vehicle (ATV) characterized by a modular architecture. The ATV is composed by two modules: the first one hosts mainly the vehicle engine and powertrain components, meanwhile the second one can be used for goods transportation, personnel carrier, crane and so on. The engine torque is transmitted to the front axle sprocket wheel of each module and finally distributed on the ground through a track mechanism. The two modules are connected through a multiaxial joint designed to guarantee four relative degrees of freedom. To steer the ATV, an Electro Hydraulic Power System (EHPS) is adopted, thus letting the vehicle steerable on any kind of terrain without a differential tracks speed. The paper aims to analyze the steady-state lateral behavior of the ATV on a flat road, through a non-linear mathematical vehicle model built in Matlab/Simulink environment.
Technical Paper

State of the Art and Future Trends of Electrification in Agricultural Tractors

2022-09-16
2022-24-0002
Hybrid and electric powertrains are experiencing a consistent growth in the automotive field demonstrating their effectiveness in reducing pollutant emissions especially in urban areas. Recently these technologies started to be investigated in the field of work machineries as possible solution to meet increasingly stricter regulations on pollutant emissions. The construction field was the first to recognize the benefits of a partial or total electrification of a work machinery. Nowadays, the consolidation of the technology allowed for its consistent diffusion in the more conservative agricultural field where manufacturers are struggling to meet emissions regulations without losing in terms of work performance. Tractors manufacturers are the most affected actors because of the difficulty to integrate bulky gas aftertreatment systems on board of their vehicle.
Technical Paper

Speed and Acceleration Impact on Pollutant Emissions

1996-05-01
961113
This paper intends to analyze the simultaneous impact of speed and acceleration on exhaust pollutant emissions. For this purpose, actual driving recording were used. Kinematic sequences were randomly selected amongst the recorded data, in order to constitute a representative set of driving conditions. For each sequence, average levels of speed and positive acceleration were calculated. Instantaneous and integrated pollutant emissions were calculated using an existing emission model, developed for calculating pollutant emissions and fuel consumption as functions of instantaneous speed and acceleration. This model is based on instantaneous emission measurements on a chassis dynamometer using actual driving cycles, over a sample of 150 European cars. Emissions of CO, CO2, HC, NOx were analyzed considering the average speed and positive acceleration, for different categories of vehicles Diesel, conventional and catalyst vehicles.
Journal Article

Sideslip Angle Estimation of a Formula SAE Racing Vehicle

2016-04-05
2016-01-1662
A method for estimating the sideslip angle of a Formula SAE vehicle with torque vectoring is presented. Torque vectoring introduces large tire longitudinal forces which lead to a reduction of the tire lateral forces. A novel tire model is utilized to represent this reduction of the lateral forces. The estimation is realized using an extended Kalman filter which takes in standard sensor measurements. The developed algorithm is tested by simulating slalom and figure eight maneuvers on a validated VI-CarRealTime vehicle model. Results indicate that the algorithm is able to estimate the sideslip angle of the vehicle reliably on a high friction surface track.
Technical Paper

Shock Absorber Modeling and Experimental Testing

2007-04-16
2007-01-0855
Simulation is becoming the fundamental tool to design the main components of a vehicle. The paper describes the shock absorber model which was implemented by the Vehicle Dynamics Research Team of Politecnico di Torino. It is a modular model which can be adopted both for mono-tube and twin-tube shock absorbers. It can be used at different levels of approximation, as a function of the kind of user and his/her targets. The main data which have to be inserted in the model are fluid properties, the basic dimensions of the component and the characteristics of the orifices of the shock absorber. An experimental test bench was conceived to obtain the diagrams plotting flow rate through an orifice of a shock absorber versus the pressure drop between input and output ports. The test rig and the procedure to perform the experimental tests and insert the results in the shock absorber model are described in detail.
Technical Paper

Road to Virtual Tuning: New Physical Lump Model and Test Protocol to Support Damper Tuning in Hyundai Motor Europe Technical Center

2019-04-02
2019-01-0855
Vehicle dynamics is a fundamental part of vehicle performance. It combines functional requirements (i.e. road safety) with emotional content (“fun to drive”, “comfort”): this balance is what characterizes the car manufacturer (OEM) driving DNA. To reach the customer requirements on Ride & Handling, integration of CAE and testing is mandatory. Beside of cutting costs and time, simulation helps to break down vehicle requirements to component level. On chassis, the damper is the most important component, contributing to define the character of the vehicle, and it is defined late, during tuning, mainly by experienced drivers. Usually 1D lookup tables Force vs. Velocity, generated from tests like the standard VDA, are not able to describe the full behavior of the damper: different dampers display the same Force vs. Velocity curve but they can give different feeling to the driver.
Technical Paper

Reduction in Pollutant Emissions in an “Off-Road” DI Diesel Engine by Means of Exhaust Gas Recirculation

2011-11-08
2011-32-0610
The aim of this work was to obtain a reduction in pollutant emissions, in particular for NOx and Soot, in an “Off-Road” DI Diesel Engine, equipped with a common rail injection system, by means of exhaust gas recirculation (EGR). First, an engine simulation was performed using a one-dimensional code, and the model was then calibrated with experimental results obtained from a previous research work conducted on bench tests. Thanks to the engine model, specific emissions were then determined in all conditions, that is, in “eight modes” pertaining to engine loads and speeds. Both the injection advance and EGR amount were changed for all of these conditions in order to obtain the best compromise between fuel consumption and emissions and to respect standard regulations. The investigation was performed using both the Wiebe and a more complex combustion models; this latter allows in fact to determine the soot emission through the Nagle-Strickland model.
Technical Paper

Real Time Modelling of Automotive Electric Drives for Hardware-in-the-Loop Applications

2023-08-28
2023-24-0028
The current electrification trend involving hybrid and electric vehicles requires accurate tools to evaluate performance and reliability of electric powertrains’ control systems. Thanks to Hardware in the Loop (HiL) technique, verification, validation and virtual calibration of Electronic Control Systems can be performed without physical plants, addressing the need of frontloading, cost and time reduction of new vehicles control systems development. However, HiL applications with power electronics controllers brings several concerns due to the extremely low timestep needed for accurate simulation of electromagnetic phenomena, making FPGA-based simulation the only option. Moreover, thermal aspects of electric motors are very important from the control perspective as complex thermal management control strategies are implemented to improve the efficiency and to prevent overheating that can cause permanent damage to the electrical machine.
X