Refine Your Search

Topic

Author

Search Results

Technical Paper

Using Pro/ENGINEER and ANSYS in Undergraduate Engineering Education

1994-09-01
941748
The authors relate their experience in teaching a senior level Computer-Aided Design (CAD) course in Mechanical Engineering using advanced Computer-Aided Engineering software. The course balances the theory and the need for hands-on experience with commercial CAD software in solving practical design problems. Students are given assignments ranging from simple 3D modeling exercises and 2D finite element analyses to an optimization project requiring more advanced 3D modeling and analysis. Where possible, analytical solutions are found and compared to the finite element results. The software allows the students to explore much more complex problems than would have otherwise been possible.
Journal Article

Understanding Hydrocarbon Emissions in Heavy Duty Diesel Engines Combining Experimental and Computational Methods

2017-03-28
2017-01-0703
Fundamental understanding of the sources of fuel-derived Unburned Hydrocarbon (UHC) emissions in heavy duty diesel engines is a key piece of knowledge that impacts engine combustion system development. Current emissions regulations for hydrocarbons can be difficult to meet in-cylinder and thus after treatment technologies such as oxidation catalysts are typically used, which can be costly. In this work, Computational Fluid Dynamics (CFD) simulations are combined with engine experiments in an effort to build an understanding of hydrocarbon sources. In the experiments, the combustion system design was varied through injector style, injector rate shape, combustion chamber geometry, and calibration, to study the impact on UHC emissions from mixing-controlled diesel combustion.
Technical Paper

Two-Microphone Measurements of the Acoustical Properties of SAE and ISO Passby Surfaces in the Presence of Wind and Temperature Gradients

1997-05-20
971988
It has been noted that there are consistent differences between sideline sound levels measured on the two track types used for standardized motor vehicle passby testing: i.e., ISO and SAE surfaces. When the two-microphone transfer function method was first used in conjunction with a two parameter ground model to characterize the acoustical properties of these asphalt surfaces it was found that there were significant acoustical differences between the ISO and SAE surfaces. However, it was also noted that environmental conditions, e.g., wind and temperature gradients, affected the estimates of surface properties obtained by using that method. In the present work, a ray tracing algorithm has been used to model the effects of environmental refraction on short range propagation over asphalt, and a physically-based single parameter ground model has been used to characterize the asphalt surfaces.
Technical Paper

Transmission Modulating Valve Simulation and Simulation Verification

1990-04-01
900917
This paper presents a response to the question: Simulation - mathematical manipulation or useful design tool? A mathematical model of a modulating valve in a transmission control system was developed to predict clutch pressure modulation characteristics. The transmission control system was previously reported in SAE Paper 850783 - “Electronic/Hydraulic Transmission Control System for Off-Highway Vehicles”. The comparison of simulation predictions with test data illustrates the effectiveness of simulation as a design tool. THE EVOLUTION OF COMPUTER hardware and simulation software has resulted in increased interest and usage of simulation for dynamic analysis of hydraulic systems. Most commercially available software is relatively easy to learn to use. The application of such software and the modeling techniques involved require a longer learning curve.
Journal Article

Transient, Three Dimensional CFD Model of the Complete Engine Lubrication System

2016-04-05
2016-01-1091
This paper reports on a comprehensive, crank-angle transient, three dimensional, computational fluid dynamics (CFD) model of the complete lubrication system of a multi-cylinder engine using the CFD software Simerics-Sys / PumpLinx. This work represents an advance in system-level modeling of the engine lubrication system over the current state of the art of one-dimensional models. The model was applied to a 16 cylinder, reciprocating internal combustion engine lubrication system. The computational domain includes the positive displacement gear pump, the pressure regulation valve, bearings, piston pins, piston cooling jets, the oil cooler, the oil filter etc… The motion of the regulation valve was predicted by strongly coupling a rigorous force balance on the valve to the flow.
Technical Paper

The Design and Operation of a Turbocharger Test Facility Designed for Transient Simulation

1997-02-24
970344
The turbocharger, consisting of a radial or axial flow turbine and an radial flow compressor presents perhaps one of the most challenging tasks to the turbomachinery designer. Due to the necessity of speed changes in the diesel engine, the turbocharger transits a wide variety of operating points in its normal operation. During an engine speed acceleration or deceleration there will be a lag in the required air delivery to the engine, resulting in increased smoke emission and limiting the power delivered by the engine. In order to investigate the dynamic performance of a turbocharged engine, an essential first step must be the development of an adequate model for transient characteristics of the turbocharger. One of the significant problems that must be overcome for the modeling effort to be successful is a detailed experimental description of the transient performance of the device.
Technical Paper

The Application of Boundary Element Analysis to Engine Component Design

1987-02-01
870578
Boundary element analysis (BEA) is an effective computer simulation program for certain applications in design engineering. The BEA technique has been used extensively at Caterpillar for structural analysis of engine and vehicle components. The time savings and modeling ease of BEA are illustrated with specific examples of engine component models. These examples represent a variety of modeling techniques, and include comparisons with measured test data.
Technical Paper

System Efficiency Issues for Natural Gas Fueled HCCI Engines in Heavy-Duty Stationary Applications

2002-03-04
2002-01-0417
Homogeneous Charge Compression Ignition (HCCI) has been proposed for natural gas engines in heavy duty stationary power generation applications. A number of researchers have demonstrated, through simulation and experiment, the feasibility of obtaining high gross indicated thermal efficiencies and very low NOx emissions at reasonable load levels. With a goal of eventual commercialization of these engines, this paper sets forth some of the primary challenges in obtaining high brake thermal efficiency from production feasible engines. Experimental results, in conjunction with simulation and analysis, are used to compare HCCI operation with traditional lean burn spark ignition performance. Current HCCI technology is characterized by low power density, very dilute mixtures, and low combustion efficiency. The quantitative adverse effect of each of these traits is demonstrated with respect to the brake thermal efficiency that can be expected in real world applications.
Technical Paper

Recent Advancements in I.C. Engine Robust Speed Controllers

1997-04-01
971568
Presented in this paper is a nonlinear modeling and a controller design methodology for engine control. For illustrative purposes, the methodology is applied to the idle speed of a Ford 4.6L-2 valve V-8 fuel injected engine. The nonlinear model of the engine is based on a Hammerstein type model which is identified through input-output data without a priori knowledge of the engine dynamics. The nonlinear model is subsequently used in a frequency domain controller design methodology to achieve the performance goal of maintaining the engine idle speed within a prespecified asymmetric output tolerance despite external torque disturbances. An experimental verification of the proposed control law is included.
Technical Paper

Rapid Prototyping of Control Strategies for Embedded Systems

1995-04-01
951197
As both the number and complexity of electronic control system applications on earthmoving equipment and on-highway trucks increase, so does the effort associated with developing and maintaining control strategies implemented in embedded systems. A new tool was recently introduced by Sigma Technology of Ann Arbor, Michigan, that provides the capability to perform rapid prototyping of production embedded systems. The rapid prototyping process includes system modeling, control algorithm synthesis, simulation analysis, source code generation and vehicle implementation. The results of incorporating this tool in the control system design process include improved control performance, improved system reliability/robustness, and significantly reduced development/maintenance costs.
Technical Paper

Prediction and Measurement of Microstructure and Residual Stresses due to Electron Beam Welding Process

1999-04-14
1999-01-1872
Electron beam (EB) welding process is characterized by an extremely high power density that is capable of producing weld seams which are considerably deeper than width. Unlike other welding process, heat of EB welding is provided by the kinetic energy of electrons. This paper presents a computational model for the numerical prediction of microstructure and residual stress resulting from EB welding process. Energy input is modeled as a step function within the fusion zone. The predicted values from finite element simulation of the EB welding process agree well with the experimentally measured values. The present model is used to study an axial weld failure problem.
Technical Paper

Optimization of a Hydraulic Valve Design Using CFD Analysis

2005-11-01
2005-01-3633
The design of a pressure compensated hydraulic valve is optimized using CFD analysis. The valve is used in a hydraulic system to control implement movement. High flow rates through the valve resulted in unacceptably high pressure drops, leading to an effort to optimize the valve design. Redesign of the valve had to be achieved under the constraint of minimal manufacturing cost. The flow path of hydraulic oil through the valve, the spool design, and various components of the valve that caused the high pressure drops were targeted in this analysis. A commercially available CFD package was used for the 3D analysis. The hydraulic oil flow was assumed to be turbulent, isothermal and incompressible. The steady-state results were validated by comparison with experimental data.
Technical Paper

Optimization of Natural Gas Engine Performance by Multidimensional Modeling

1997-04-01
971567
Multidimensional numerical simulations are performed to predict and optimize engine performance of a spark-ignited natural gas engine. The effects of swirl and combustion chamber geometry on in-cylinder turbulence intensity, burning rate and heat transfer are investigated using the KIVA multidimensional engine simulation computer code. The original combustion model in the KIVA code has been replaced by a model which was recently developed to predict natural gas turbulent combustion under engine-like conditions. Measurements from a constant volume combustion chamber and engine test data have been used to calibrate the combustion model. With the numerical results from KIVA code engine thermal efficiencies were predicted by the thermodynamics based WAVE code. The numerical results suggest alternative combustion chamber designs and an optimum swirl range for increasing engine thermal efficiency.
Technical Paper

On Determining the Quality Levels of Engineering Analyses Process - A 6 Sigma Approach

2008-04-14
2008-01-1167
Determining quality levels of analyses process is important in terms of being able to estimate the quality levels. This paper presents an approach based on 6 sigma methodology to estimate the quality levels of engineering analyses. The analyses types covered here are structural and computational fluid dynamics (CFD) types. Three examples covering the analyses types are presented here that show the way quality levels are reported. With the aim of continuous improvement of the analysis process, there is a need to build quality metrics specific to different product types. Future work is aimed to address this need for specific quality metrics.
Journal Article

Obtaining Structure-borne Input for Hybrid FEA/SEA Engine Enclosure Models through a Simplified Transfer Path Analysis

2015-06-15
2015-01-2349
Structure-borne inputs to hybrid FEA/SEA models could have significant effects on the model prediction accuracy. The purpose of this work was to obtain the structure-borne noise (SBN) inputs using a simplified transfer path analysis (TPA) and identify the significance of the structure-borne and airborne contributions to the spectator sound power of an engine with enclosure for future modeling references. Force inputs to the enclosure from the engine were obtained and used as inputs to a hybrid engine enclosure model for sound prediction.
Technical Paper

Obtaining Structure-Borne Input Power for a SEA Model of an Earthmoving Machine Cab

2011-05-17
2011-01-1732
Properly characterizing input forces is an important part of simulating structure-borne noise problems. The purpose of this work was to apply a known force reconstruction technique to an earthmoving machinery cab to obtain input functions for modeling purposes. The technique was performed on a cab under controlled laboratory conditions to gain confidence in the method prior to use on actual machines. Forces were measured directly using force transducers and compared to results from the force reconstruction technique. The measured forces and vibrations were used as input power to an SEA model with favorable results.
Journal Article

Numerical Simulations of Noise Induced by Flow in HVAC Ventilation Ducts

2011-04-12
2011-01-0505
Numerical simulations are performed to investigate noise generated by flow in automotive HVAC ducts. A hybrid computational method for analyzing flow noise is applied: Large Eddy Simulation (LES) for predicting flow fields and Multi-domain boundary element method for predicting acoustic propagation. LES gives time-resolved solutions of flow velocity and pressure fields. By applying the acoustic analogy theory, the unsteady flow parameters are translated into sound source in evaluating the acoustic propagation. The computational result shows the noise caused by the HVAC ducts is strong. The noise is of broadband with a peak value at 370Hz. A major contribution of the noise generation is from the center ducts. Two design modifications of the center ducts are explored to regulate the flow structures with the ducts for reducing noise generation. Test results demonstrate the effectiveness of the modifications.
Technical Paper

Numerical Simulation of Quenching Process at Caterpillar

1993-04-01
931172
Caterpillar uses heat treatment to enhance the properties of a significant number of parts. Traditional heat treat process optimization is both time consuming and expensive when done by empirical methods. This paper describes a computer simulation of the heat treatment process, developed by Caterpillar, based upon finite element analysis. This approach combines thermal, microstructural, and stress analysis to accurately model material transformation during quenching. Examples are presented to illustrate the program.
Technical Paper

Nonlinear Modeling and Control of I.C. Engine Idle Speed

1997-02-24
970512
Presented in this paper is the nonlinear modeling and control of the idle speed of a Ford 4.6L-2 valve V-8 fuel injected engine. The nonlinear model of the engine is based on a Hammerstein type model which is identified through input-output data without a priori knowledge of the engine dynamics. The nonlinear model is used in a frequency domain controller design methodology to achieve the performance goal of maintaining the engine idle speed within a prespecified asymmetric output tolerance despite external torque disturbances. An experimental verification of the nonlinear controller is included.
Technical Paper

Multivariate Regression and Generalized Linear Model Optimization in Diesel Transient Performance Calibration

2013-10-14
2013-01-2604
With stringent emission regulations, aftertreatment systems with a Diesel Particulate Filter (DPF) and a Selective Catalytic Reduction (SCR) are required for diesel engines to meet PM and NOx emissions. The adoption of aftertreatment increases the back pressure on a typical diesel engine and makes engine calibration a complicated process, requiring thousands of steady state testing points to optimize engine performance. When configuring an engine to meet Tier IV final emission regulations in the USA or corresponding Stage IV emission regulations in Europe, this high back pressure dramatically impacts transient performance. The peak NOx, smoke and exhaust temperature during a diesel engine transient cycle, such as the Non-Road Transient Cycle (NRTC) defined by the US Environmental Protection Agency (EPA), will in turn affect the performance of the aftertreatment system and the tailpipe emissions level.
X