Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

The Effects of Cage Flexibility on Ball-to-Cage Pocket Contact Forces and Cage Instability in Deep Groove Ball Bearings

Rolling element bearings provide near frictionless relative motion between two rotating parts. Automotive transmissions use various ball and rolling element bearings to accommodate the relative motion between rotating elements. In order to understand changes in bearing performance due to the loads imposed through the transmission, advanced modeling of the bearing is required. This paper focuses on the effects of cage flexibility on bearing performance. A flexible cage model was developed and incorporated into a six degree-of-freedom dynamic, deep groove ball bearing model. A lumped mass approach was used to represent the cage flexibility and was validated through an ANSYS forced response analyses of the cage. Results from the newly developed Flexible Cage Model (FCM) and an identical numerical model employing a rigid bearing cage were compared to determine the effects of varying ball-to-cage pocket clearance and cage stiffness on cage motion and ball-to-cage pocket contact forces.
Technical Paper

Optimization of Metalcasting Design

Design optimization for functionality, and manufacturability was virtually impossible in the past. However, recent standardization of file storing formats resulted in seamless data transfer from one software package to another; thus, allowing integration of all facets of product design optimization. This paper describes a metalcasting design optimization process. It focuses on the design of cast parts according to functional requirements while optimizing shape with respect to structural integrity, while ascertaining that the part can be manufactured (cast) without defects.
Technical Paper

Novel Force-Based High-Speed Three-Dimensional NASCAR Vehicle Model

Typical vehicle dynamics simulations demand a trade-off between short computation times and accuracy. Many of the more simple models are based on the kinematic roll center and the more accurate models tend to be multi-body dynamics simulation programs. There is a need for a model that improves the accuracy of the kinematic roll center models while still maintaining short computation times. Such a model could be used track-side during races to guide race teams toward improved handling. The model presented in this paper removes many of the assumptions and limitations of the kinematic roll center model. The model accounts for three-dimensional forces present at the contact patch and predicts deflections of suspension components. The modeling approach is applied to a NASCAR Craftsman Truck to predict the effects of suspension design and tuning on steady-state understeer characteristics of the vehicle. Braking and acceleration forces can also be applied to the vehicle.
Technical Paper

Multi-Material Topology Optimization for Crashworthiness Using Hybrid Cellular Automata

Structures with multiple materials have now become one of the perceived necessities for automotive industry to address vehicle design requirements such as light-weight, safety, and cost. The objective of this study is to develop a design methodology for multi-material structures accountable for vehicle crash durability. The heuristic topology synthesis approach of Hybrid Cellular Automaton (HCA) framework is implemented to generate multi-material structures with the constraint on the volume fraction of the final design. The HCA framework is integrated with ordered-SIMP (solid isotropic material with penalization) interpolation, artificial material library, as well as statistical analysis of material distribution data to ensure a smooth transition between multiple practical materials during the topology synthesis.
Journal Article

Modeling and Simulation of a Hydraulic Steering System

Conventional hydraulic steering systems keep improving performance and driving comfort by introducing advanced features via mechanical design. The ever increasing mechanical complexity requires the advanced modeling and simulation technology to mitigate the risks in the early stage of the development process. In this paper, we focus on advanced modeling tools environment with an example of a load sensing hydraulic steering system. The complete system architecture is presented. Analytical equations are developed for a priority valve and a steering control unit as the foundation of modeling. The full version of hydraulic steering system model is developed in Dymola platform. In order to capture interaction between steering and vehicle, the co-simulation platform between the hydraulic steering system and vehicle dynamics is established by integrating Dymola, Carsim and Simulink.
Technical Paper

Methodology for Metalcasting Process Selection

Today, there are several hundreds of manufacturing processes available to the designer to choose from, and the number is constantly increasing. The ability to choose a manufacturing process for a particular user need set in the early stage of the design process is necessary. In metalcasting alone, there are over forty different processes with different capabilities. A designer can benefit from knowing the manufacturing process alternatives available to him. Inaccurate process selection can lead to financial losses and market share erosion. This paper discusses a methodology for selection of a metalcasting process based on a number of user specified attributes or requirements. A model of user requirements was developed and these requirements were matched with the capabilities of each metalcasting process. The metalcasting process which best meets these needs is suggested.
Technical Paper

Indirect Measurement of Tire Slip and Understeer/Oversteer

This paper presents a method for indirect measurement of tire slip angles from chassis acceleration, yaw rate, and steer angle measurements. The chassis is assumed to be rigid so that acceleration data can be integrated to estimate velocities of the front and rear of the vehicle, from which slip angles can be predicted. The difference in front and rear slip angles is indicative of vehicle oversteer/understeer. Understeer data can then be correlated with position on the track to better understand vehicle handling behavior, aiding the tuning process. The technique is presented, and shown to work well with simulated data, even when the data is corrupted with up to 20% noise. Therefore, the inversion process presented here is theoretically sound. However, when the technique is applied to measured data from race cars, it is shown to be inaccurate. One suspected problem is the difficulty of getting accurate yaw rate data.
Technical Paper

Education and Outreach Program Designed for NASA Specialized Center of Research and Training in Advance Life Support (ALS/NSCORT)

The NASA Specialized Center of Research and Training in Advanced Life Support (ALS/NSCORT) Education and Outreach Program is designed to engage audiences through concepts and technologies highlighted in the NSCORT research program. The outreach program is composed of three thrust areas. These areas are technical outreach (graduate education, technology transfer, presentations to industry, etc.), educational outreach (professional development, undergraduate, K-12), and public outreach (museums, state fairs, etc.) Program design of the technical and educational outreach began in January 2003. This paper reports anecdotal data on one ALS/NSCORT outreach program and gives a brief description of the other programs in their pilot stages. Technical and educational outreach programs developed to date include: 1) Summer Fellowship Research Program, 2) Distance Learning Course, 3) Key Learning Community Collaborative Project and 4) Mission to Mars.
Technical Paper

Development of a SIL, HIL and Vehicle Test-Bench for Model-Based Design and Validation of Hybrid Powertrain Control Strategies

Hybrid powertrains with multiple sources of power have generated new control challenges in the automotive industry. Purdue University's participation in EcoCAR 2, an Advanced Vehicle Technology Competition managed by the Argonne National Laboratories and sponsored by GM and DOE, has provided an exciting opportunity to create a comprehensive test-bench for the development and validation of advanced hybrid powertrain control strategies. As one of 15 competing university teams, the Purdue EcoMakers are re-engineering a donated 2013 Chevrolet Malibu into a plug-in parallel- through-the-road hybrid-electric vehicle, to reduce its environmental impact without compromising performance, safety or consumer acceptability. This paper describes the Purdue team's control development process for the EcoCAR 2 competition.
Technical Paper

Derivation of the Three-Dimensional Installation Ratio for Dual A-Arm Suspensions

Conventional suspension analysis of three-dimensional suspensions typically use two-dimensional analyses. This is done by projecting suspension components onto two-dimensional planes and then performing a two-dimensional analysis in each of these orthogonal planes or neglecting motions in one of the planes entirely. This requires multiple iterations because changes in one plane require a checking of their effects on motion in the other orthogonal planes. In doing so, much of the insight and accuracy gained from a three-dimensional analysis can be lost. A three-dimensional kinematic analysis approach is presented and applied to a dual A-Arm suspension system. All motions are considered instantaneously about a screw axis instead of a point as used by the usual two-dimensional modeling approach. The model predicts deflections of suspension components in response to the three-dimensional forces present at the contact patch.