Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Acoustic Synthesis Method: Improving Acquisition Time by Using P-U Probes

2005-05-16
2005-01-2444
In order to reach OEMs acoustic treatment targets (improving performance while minimizing the weight and cost impact), we have developed an original hybrid approach called “Vehicle Acoustic synthesis method”[1] to simulate - and therefore to optimize - noise treatments for both insulation and absorption, and to calculate the resulting Sound Pressure Level (SPL) at ear points for the middle and high frequency range. To calculate the SPL, we identify equivalent volume velocity sources from intensity measurements, and combine them to acoustic transfer functions (panel/ear) measured or computed with ray tracing codes using the reciprocity principle. Compared to our first approach [1], this paper shows a new measurement technique using pressure-particle velocity probes [2]. This technique allows to reduce acquisition time by a factor four, and makes therefore possible a synthesis method on a complete car within two weeks.
Journal Article

Understanding of the Internal Crack Phenomenon inside Diesel Particulate Filter during Regeneration Part 1: Modeling and Experiments

2010-05-05
2010-01-1555
This study deals with a coupled experimental and modeling approach of Diesel Particulate Filter cracking. A coupled model (heat transfer, mass transfer, chemical reactions) is used to predict the temperature field inside the filter during the regeneration steps. This model consists of assembled 1D models and is calibrated using a set of laboratory bench tests. In this set of experiments, laboratory scale filters are tested in different conditions (variation of the oxygen rate and gas flow) and axial/radial thermal gradient are recorded with the use of thermocouples. This model is used to build a second set of laboratory bench tests, which is dedicated to the understanding of the phenomena of Diesel Particulate Filter cracking.
Technical Paper

Torso Improvements in Child Dummies Used for Certification Tests in Europe

1997-11-12
973315
Child dummies used in certification dynamic tests have not been improved since their marketing and their approval as European regulation dummies. Their main shortcoming lies in a too high and therefore unrealistic stiffness of the torso front part. The paper addresses a study carried out in the aim of solving this problem. It includes two parts: in a first section, the changes brought to the dummy torso and intended to improve its biofidelity and to reduce stiffness drastically are described. In order to reach such an objective, the lower part of the upper torso was remodelled; the pelvis profile was redefined and the geometrical and mechanical characteristics of the foam used for the abdominal insert were changed. The results obtained using two transducers installed in the abdominal section are then presented. The measurement principle of the first transducer consists in a pressure measurement, and the principle of the second one in a load measurement.
Technical Paper

The Potential of Highly Premixed Combustion for Pollutant Control in an Automotive Two-Stroke HSDI Diesel Engine

2012-04-16
2012-01-1104
An innovative alternative to overcome the load limits of the early injection highly premixed combustion concept consists of taking advantage of the intrinsic characteristics of two-stroke engines, since they can attain the full load torque of a four-stroke engine as the addition of two medium load cycles, where the implementation of this combustion concept could be promising. In this frame, the main objective of this investigation focuses on evaluating the potential of the early injection HPC concept using a conventional diesel fuel combined with a two-stroke poppet valves engine architecture for pollutant control, while keeping a competitive engine efficiency. On a first stage, the HPC concept was implemented at low engine load, where the concept is expected to provide the best results, by advancing the start of injection towards the compression stroke and it was confirmed how it is possible to reduce NOX and soot emissions, but increasing HC and CO emissions.
Technical Paper

System Optimization for a 2-Stroke Diesel Engine with a Turbo Super Configuration Supporting Fuel Economy Improvement of Next Generation Engines

2014-11-11
2014-32-0011
The objective of this paper is to present the results of the GT Power calibration with engine test results of the air loop system technology down selection described in the SAE Paper No. 2012-01-0831. Two specific boosting systems were identified as the preferred path forward: (1) Super-turbo with two speed Roots type supercharger, (2) Super-turbo with centrifugal mechanical compressor and CVT transmission both downstream a Fixed Geometry Turbine. The initial performance validation of the boosting hardware in the gas stand and the calibration of the GT Power model developed is described. The calibration leverages data coming from the tests on a 2 cylinder 2-stroke 0.73L diesel engine. The initial flow bench results suggested the need for a revision of the turbo matching due to the big gap in performance between predicted maps and real data. This activity was performed using Honeywell turbocharger solutions spacing from fixed geometry waste gate to variable nozzle turbo (VNT).
Technical Paper

Robust Design of Acoustic Treatments for Powertrain Noise Radiation

2018-06-13
2018-01-1486
The reduction of the emitted noise from vehicles is a primary issue for automotive OEM’s due to the constant evolution of the noise regulations. As the noise generated by the powertrain remains one of the major noise sources at low/mid vehicle velocities, focus is set on efficient methods to control this source. Acoustic treatments and covers, made of multi-layered trimmed panels, are frequently selected to control the radiated sound and its directivity. In this context, numerical acoustic simulation is an attractive approach as efficient methodologies are available to study the acoustic radiation of powertrain units in working conditions (up to 6500 RPM nd frequencies up to 4 kHz). Moreover, handling acoustically-treated covers in such simulations has a low impact on the computational cost.
Technical Paper

Repeatability of Fine Particle Measurement of Diesel and Gasoline Vehicles Exhaust Gas

2004-06-08
2004-01-1983
Four Diesel vehicles and two gasoline ones are used to determine the repeatability of the particle number and size measurements. Two analytical techniques are used: Scanning Mobility Particle Sizer (SMPS) and Electrical Low Pressure Impactor (ELPI). The influence of technology (Euro2 and Euro3, Diesel and gasoline vehicles, Diesel Particulate Filter (DPF), Gasoline Direct Injection (GDI)) and speed on the particle number and size is presented in the case of steady speeds and the European Driving Cycle (EDC). The repeatability of these measurements is determined at the entire particle distribution. The global 1.96*Standard Deviation (SD) of the median diameter, determined by SMPS, is 8 nm. The median diameter is difficult to be determined in several cases due to the flat profiles of the emitted particles. The global 1.96*Relative Standard Deviation (RSD) of the particle number presents a U-like curve, with a minimum value (55-57%) at about 100 nm.
Technical Paper

Quantifying Benefits of Dual Cam Phasers, Lean Mixture and EGR on the Operating Range and Fuel Economy of a PFI NVO CAI Engine

2010-04-12
2010-01-0844
Among the existing concepts that help to improve the efficiency of spark-ignition engines at part load, Controlled Auto-Ignition™ (CAI™) is an effective way to lower both fuel consumption and pollutant emissions. This combustion concept is based on the auto-ignition of an air-fuel-mixture highly diluted with hot burnt gases to achieve high indicated efficiency and low pollutant emissions through low temperature combustion. To minimize the costs of conversion of a standard spark-ignition engine into a CAI engine, the present study is restricted to a Port Fuel Injection engine with a cam-profile switching system and a cam phaser on both intake and exhaust sides. In a 4-stroke engine, a large amount of burnt gases can be trapped in the cylinder via early closure of the exhaust valves. This so-called Negative Valve Overlap (NVO) strategy has a key parameter to control the amount of trapped burnt gases and consequently the combustion: the exhaust valve-lift profile.
Journal Article

Preliminary Design of a Two-Stroke Uniflow Diesel Engine for Passenger Car

2013-04-08
2013-01-1719
The target of substantial CO₂ reductions in the spirit of the Kyoto Protocol as well as higher engine efficiency requirements has increased research efforts into hybridization of passenger cars. In the frame of this hybridization, there is a real need to develop small Internal Combustion Engines (ICE) with high power density. The two-stroke cycle can be a solution to reach these goals, allowing reductions of engine displacement, size and weight while maintaining good NVH, power and consumption levels. Reducing the number of cylinders, could also help reduce engine cost. Taking advantage of a strong interaction between the design office, 0D system simulations and 3D CFD computations, a specific methodology was set up in order to define a first optimized version of a two-stroke uniflow diesel engine. The main geometrical specifications (displacement, architecture) were chosen at the beginning of the study based on a bibliographic pre-study and the power target in terms.
Technical Paper

Modeling of Pressure-Swirl Atomizers for GDI Engines

1999-03-01
1999-01-0500
A new simulation approach to the modeling of the whole fuel injection process within a common-rail fuel injection system for direct-injection gasoline engines, including the pressure-swirl atomizer and the conical hollow-cone spray formed at the nozzle exit, is presented. The flow development in the common-rail fuel injection system is simulated using an 1-D model which accounts for the wave dynamics within the system and predicts the actual injection pressure and injection rate throughout the nozzle. The details of the flow inside its various flow passages and the discharge hole of the pressure-swirl atomizer are investigated using a two-phase CFD model which calculates the location of the liquid-gas interface using the VOF method and estimates the transient formation of the liquid film developing on the walls of the discharge hole due to the centrifugal forces acting on the swirling fluid.
Technical Paper

Investigation of Gravel Noise Mechanisms and Impact Noise Transfer

2007-05-15
2007-01-2274
Impact noise, inside a car, due to tire-launched gravel on the road can lead to loss of quality perception. Gravel noise is mainly caused by small-sized particles which are too small to be seen on the road by the driver. The investigation focuses on the identification of the mechanisms of excitation and transfer. The spatial distribution of the particles flying from a tire is determined, as well as the probable impact locations on the vehicle body-panels. Finally the relative noise contributions of the body-panels are estimated by adding the panel-to-ear transfer functions. This form of Transfer-Path-Analysis allows vehicle optimization and target setting on the level of the tires, exterior panel treatment and isolation.
Technical Paper

Influence of the Micro- and Macro-Structural Parameters on the Dynamic Behavior of Structures Made of Polymers Reinforced with Short Glass Fibers

2018-06-13
2018-01-1501
In order to design vehicles with diminished gCO2/km emissions level, car manufacturers aim at reducing the weight of their vehicles. One of the solutions advocated by the automotive industry consists in the replacement of metallic parts by lighter systems made of polymer reinforced composites. Unfortunately, the numerical simulations set to evaluate the vibratory and acoustic performances of systems made of this kind of materials are often not sufficiently effective and robust so that convincing test/simulation correlations are rarely met. Indeed, for polymer-based materials, numerous parameters affect the vibroacoustic behavior. On the one hand, it is well known that the viscoelastic properties (Storage -Young- and dissipative moduli) of polymers depend on the temperature, loading frequency and sometimes the humidity content.
Technical Paper

Fuel Additive Performance Evaluation for Volume Production Application of a Diesel Particulate Filter

2001-03-05
2001-01-1286
Diesel particulate filter (DPF) technology is becoming increasingly established as a practical method for control of particulate emissions from diesel engines. In the year 2000, production vehicles with DPF systems, using metallic fuel additive to assist regeneration, became available in Europe. These early examples of first generation DPF technology are forerunners of more advanced systems likely to be needed by many light-duty vehicles to meet Euro IV emissions legislation scheduled for 2005. Aspects requiring attention in second generation DPF systems are a compromise between regeneration kinetics and ash accumulation. The DPF regeneration event is activated by fuel injection, either late in the combustion cycle (late injection), or after normal combustion (post injection), leading to increased fuel consumption. Therefore for optimum fuel economy, the duration of regeneration and/or the soot ignition temperature must be minimised.
Technical Paper

Fatigue Analysis of Conrod Bearing

2011-04-12
2011-01-0197
For many years, bearing suppliers have been using the specific pressure to evaluate the fatigue risk of conrod bearings. However, modern engines have made the bearing more sensitive to various phenomena such as the thermal expansion or the elasticity of the conrod housing. These effects modify the stresses in the bearing layers and consequently fatigue risk. In this paper, we propose a new way to determine the bearing fatigue resistance. To achieve that, we analyze the elastic and plastic behavior of the bearing along the engine life. We detail and provide the analytical relationships which determine stresses in the overlay and in the substrate of the bearing in order to analyze their fatigue resistance. Various physical loads are taken into account such as the thermal load, the hydrodynamic pressure field, the fitting load, the free spread load. A good knowledge of the relationships between those physical phenomena helps to understand the mechanical behavior of the bearing.
Technical Paper

Experimental Study of Automotive Turbocharger Turbine Performance Maps Extrapolation

2016-04-05
2016-01-1034
Engine downsizing is potentially one of the most effective strategies being explored to improve fuel economy. A main problem of downsizing using a turbocharger is the small range of stable functioning of the turbocharger centrifugal compressor at high boost pressures, and hence the measurement of the performance maps of both compressor and turbine. Automotive manufacturers use mainly numerical simulations for internal combustion engines simulations, hence the need of an accurate extrapolation model to get a complete turbine performance map. These complete maps are then used for internal combustion engines calibration. Automotive manufacturers use commercial softwares to extrapolate the turbine narrow performance maps, both mass flow characteristics and the efficiency curve.
Technical Paper

Experimental Investigation on the Characteristics and on the Reproducibility of the Flow issuing from a High-Pressure Direct-Injection Nozzle

1999-10-25
1999-01-3655
This paper presents an investigation on the experimental determination of some characteristics of the flow issuing from a swirl injector dedicated to direct-injection spark-ignited engines. The reproducibility, from one injection to another, of the temporal evolution of the liquid flow characteristics during the opening of the injector was investigated. This was achieved by using a high-speed film camera set at 8,000 images/s. The resulting visualizations allowed us to measure the evolution of the penetration length and velocity as well as of the liquid cone angle. It was found that the spray produced is a low momentum spray whose penetration length and velocity are small. The good reproducibility of the temporal evolution of the liquid flow characteristics has been obtained, except for the liquid cone angle during the opening stage. A fast-shutter video camera was also used to make images of the early development of the issuing liquid flow.
Technical Paper

Experimental Analysis of the Influence of Exhaust Manifold Junction Geometry on its Fluid-Dynamic Behavior

2000-03-06
2000-01-0914
The purpose of this paper is to present the results of a study on the exhaust junctions geometry. Twelve three-branch junctions of different geometry have been tested on a single cylinder engine. The parameters studied have been exhaust junction outlet-to-inlet diameter ratio, length, angle between inlet branches and the existence of a reed separating inlet branches. An analysis of the pressure waves amplitude (incident, reflected and transmitted) obtained from instantaneous pressure measurements in some locations around the junction has been carried out. The analysis of results shows that junction length has a low influence on its behavior. The ratio between inlet and outlet branches diameters increases both reflection and directionality (avoiding pressure wave transmission to the adjacent branch). The existence of a reed separating the inlet flows may increase directionality with moderate pressure losses if the throat area is not reduced.
Journal Article

Establishing New Correlations Between In-Cylinder Charge Motion and Combustion Process in Gasoline Engines Through a Numerical DOE

2010-04-12
2010-01-0349
This paper presents an innovative methodology and the corresponding results of a study whose goal is to identify the main links between in-cylinder charge motion and the development of combustion without taking into consideration how to create this charge motion (shape of the intake ducts, valve timing, etc …). During this study a specific methodology was developed and used. It is based on the calculation of a “3D numerical test bench” matrix planned following the Design Of Experiments method. Many aerodynamic configurations obtained by combining the three main aerodynamic motions with several different intensities (tumble, cross-tumble or swirl) at the intake valve closing were calculated.
Technical Paper

Effect of Flow Distribution on Emissions Performance of Catalytic Converters

1998-02-23
980936
The emissions performance of catalytic converters under different conditions of flow distribution was investigated. Computational Fluid Dynamics methods were utilised to model the maldistribution effects of different inlet cones. The effects of maldistribution on ageing, light-off and conversion were investigated using steady state tests on an engine bench. Emission testing was also conducted on a vehicle throughout ECE and EUDC test cycles. Maldistribution was found to have a significant effect on the efficiency of the catalyst during the early stages of the ECE cycle for both fresh and aged catalysts. The effects were less significant over later stages of the ECE cycle and throughout the EUDC except NOx where maldistribution did have an effect on the conversion at higher flow rates during the later stages of the test.
Journal Article

Control-Oriented Modeling of a LNT-SCR Diesel After-Treatment Architecture

2011-04-12
2011-01-1307
Lean NOx trap (LNT) and Selective Catalytic Reduction catalysts (SCR) are two leading candidates for diesel NOx after-treatment. Each technology exhibits good properties to reduce efficiently diesel NOx emissions in order to match the forthcoming EURO 6 standards. NOx reduction in LNT is made through a two-step process. In normal (lean) mode, diesel engine exhausts NOx is stored into the NOx trap; then when necessary the engine runs rich during limited time to treat the stored NOx. This operating mode has the benefit of using onboard fuel as NOx reducer. But NOx trap solution is restrained by limited active temperature windows. On the other hand, NH₃-SCR catalysts operate in a wider range of temperature and do not contain precious metals. However, NH₃-SCR systems traditionally use urea-water solution as reducing agent, requiring thus additional infrastructure to supply the vehicles with enough reducer. These pros and cons are quite restrictive in classical LNT or NH₃-SCR architecture.
X