Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Zero Prototype Approach in the Development of a Plastic Automotive Component

2004-11-16
2004-01-3300
In the developement process, the engineer is required to design, validate and deliver the components for manufacturing, in an as short as possible lead time. For that, the engineer may use some available tools to save not only time, but also cost. This work presents a zero prototype approach applyied to a plastic component, whose main accomplishment was the decreasing of lead time development due to the intensive use of virtual tools (CAD/CAE). As a result, the product was delivered in a short time, with no need of building physical prototypes, thus reducing development cost.
Technical Paper

Wind Noise and Drag Optimization Test Method for Sail-Mounted Exterior Mirrors

2003-05-05
2003-01-1702
An L18 Taguchi-style Design of Experiments (DOE) with eight factors was used to optimize exterior mirrors for wind noise and drag. Eighteen mirror properties were constructed and tested on a full size greenhouse buck at the Lockheed low-speed wind tunnel in Marietta, GA. Buck interior sound data and drag measurements were taken at 80 MPH wind speed (0° yaw angle). Key wind noise parameters were the fore/aft length of mirror housing and the plan view angle of the mirror housing's inboard surface. Key drag parameters were the fore/aft length of the mirror housing, the cross-section shape of the mirror pedestal, and the angle of the pedestal (relative to the wind).
Technical Paper

Wheel Dust Measurement and Root Cause Assessment

2003-10-19
2003-01-3341
North American drivers particularly dislike wheel dust (brake dust on their wheels). For some vehicle lines, customer surveys indicate that wheel dust is a significant concern. For this reason, Ford and its suppliers are investigating the root causes of brake dust and developing test procedures to detect wheel dust issues up-front. Intuitively, it would appear that more brake wear would lead to more wheel dust. To test this hypothesis, a gage was needed to quantitatively measure the wheel dust. Gages such as colorimeters were evaluated to measure the brightness (L*) of the wheel, which ranged from roughly 70-80% (clean) to 10-20% (very dirty). Gage R&R's and subjective ratings by a panel of 30 people were used to validate the wheel dust gages. A city traffic vehicle test and an urban dynamometer procedure were run to compare the level of wheel dust for 10 different lining types on the same vehicle.
Technical Paper

Vibration Mode Study of Steering Columns for Commercial Vehicles

2008-10-07
2008-36-0193
On the development process of truck vehicles, the dynamic behavior must be considered together with the costs involved in this development. Objective measurements, subjective evaluations and CAE simulations are used in order to support this development process. Ride comfort, acceleration and braking performance, handling and NVH are examples of attributes considered in the dynamic behavior evaluation of a tuck. Some characteristics of steering column vibration, noise and harshness are relevant to guarantee driver comfort level and vehicle safety. In this work, CAE models validated by experimental measurements were used to identify cab and vehicle modes of vibration which have significant influence on steering column response. Using this procedure, an alternative was proposed in order to decrease the amplitudes of cab and steering column vibration.
Technical Paper

Vibration Fatigue for Chassis-Mounted, Cantilevered Components

2017-03-28
2017-01-0360
Vehicle chassis mounted cantilevered components should meet two critical design targets: 1) NVH criterion to avoid resonance with road noise and engine vibration and 2) satisfied durability performance to avoid any incident in structure failure and dysfunction. Generally, two types of testing are performed to validate chassis mounted cantilevered component in the design process: shaker table testing and vehicle proving ground testing. Shaker table testing is a powered vibration endurance test performed with load input summarized from real proving ground data and accurate enough to replicate the physical test. The proving ground test is typically performed at critical milestones with full vehicles. Most tests are simplified lab testing to save cost and effort. CAE procedures that virtually replicate these lab tests is even more helpful in the design verification stages.
Technical Paper

Verification of Accelerated PM Loading for DPF Qualification Studies

2009-04-20
2009-01-1089
High gas prices combined with demand for improved fuel economy have prompted increased interest in diesel engine applications for both light-duty and heavy-duty vehicles. The development of aftertreatment systems for these vehicles requires significant investments of capital and time. A reliable and robust qualification testing procedure will allow for more rapid development with lower associated costs. Qualification testing for DPFs has its basis in methods similar to DOCs but also incorporates a PM loading method and regeneration testing of loaded samples. This paper examines the effects of accelerated loading using a PM generator and compares PM generator loaded DPFs to engine dynamometer loaded samples. DPFs were evaluated based on pressure drop and regeneration performance for samples loaded slowly and for samples loaded under accelerated conditions. A regeneration reactor was designed and built to help evaluate the DPFs loaded using the PM generator and an engine dynamometer.
Journal Article

Vehicle System Control Software Validation for the Dual Drive Hybrid Powertrain

2009-04-20
2009-01-0736
Through the use of hybrid technology, Ford Motor Company continues to realize enhanced vehicle fuel economy while meeting customer performance and drivability targets. As is characteristic of all Ford Hybrid Electric Vehicles (HEVs), the basis for resolving these competing requirements resides with its Vehicle System Control (VSC) strategy. This strategy implements complex high-level executive controls to coordinate and optimize the desired operational state of the major HEV powertrain subsystems. To ensure that the VSC software meets its intended functionality, a software validation process developed at Research and Advanced Engineering has been integrated as part of the vehicle controls development process. In this paper, this VSC software validation process implemented for a next generation hybrid powertrain is presented. First, an overview of the hybrid powertrain application and the VSC software architecture is introduced.
Journal Article

Vehicle Safety Communications - Applications: System Design & Objective Testing Results

2011-04-12
2011-01-0575
The USDOT and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, GM, Honda, Mercedes, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested communications-based vehicle safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

Vehicle Safety Communications - Applications: Multiple On-Board Equipment Testing

2011-04-12
2011-01-0586
The United States Department of Transportation (USDOT) and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, General Motors, Honda, Mercedes-Benz, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested Vehicle-to-Vehicle (V2V) communications-based safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Technical Paper

Vehicle NVH Evaluations and NVH Target Cascading Considerations for Hybrid Electric Vehicles

2015-06-15
2015-01-2362
The increasing trend toward electric and hybrid-electric vehicles (HEVs) has created unique challenges for NVH development and refinement. Traditionally, characterization of in-vehicle powertrain noise and vibration has been assessed through standard operating conditions such as fixed gear engine speed sweeps at varied loads. Given the multiple modes of operation which typically exist for HEVs, characterization and source-path analysis of these vehicles can be more complicated than conventional vehicles. In-vehicle NVH assessment of an HEV powertrain requires testing under multiple operating conditions for identification and characterization of the various issues which may be experienced by the driver. Generally, it is necessary to assess issues related to IC engine operation and electric motor operation (running simultaneously with and independent of the IC engine), under both motoring and regeneration conditions.
Technical Paper

Vehicle Glass Design Optimization Using a CFD/SEA Model

2007-05-15
2007-01-2306
A new methodology to predict vehicle interior wind noise using CFD results has been developed. The CFD simulation replaces wind tunnel testing for providing flow field information around vehicle greenhouse. A loadcase model based on the CFD results is used to excite an SEA vehicle model. This new approach has been demonstrated on a production vehicle with success for the frequency range of 250-10K Hz. The CAE prediction of interior wind noise agrees within 0.2 sones from wind tunnel testing. The model has been used to evaluate wind noise performance with different door glass design parameters. A glass thickness change from 3.8 mm to 4.8 mm results in 1.1 sones improvement, which agrees well to 1.4 sones improvement from testing. Laminated glass with about 3 times higher damping results in 2.5 sones improvement. This methodology using CFD results can be used in the early stage of product development to impact designs.
Technical Paper

Vehicle Cascade & Target Response Analysis (VeCTRA) is an Excel Based Tool Used for the Idle NVH Target Cascade Process

2003-05-05
2003-01-1434
Recent trends show a growing demand for improved powertrain noise and vibration quality. In particular, there is little customer acceptance of vibration and noise (“boom”) at engine idle speeds. CAE analysis is being used increasingly as an aid for reducing overall vehicle level responses. Traditionally, analytical idle response is evaluated for only one particular engine order at a time. An efficient Excel based tool called VeCTRA (Vehicle Cascade & Target Response Analysis) was developed to accurately assess the effects of multiple powertrain orders on the vehicle level idle response. VeCTRA is capable of predicting the overall vehicle level response (tactile and acoustic) as well as determining the contribution from each engine order and the specific component excitations within an order. VeCTRA is capable of using analytical or experimentally measured sensitivity and/or excitation data.
Technical Paper

Validation of Non-linear Load-Controlled CAE Analyses of Oil-Canning Tests of Hood and Door Assemblies

2003-03-03
2003-01-0603
Two finite element methodologies for simulating oil-canning tests on closure assemblies are presented. Reflecting the experimental conditions, the simulation methodologies assume load-controlled situations. One methodology uses an implicit finite-element code, namely ABAQUS®, and the other uses an explicit code, LS-DYNA®. It is shown that load-displacement behavior predicted by both the implicit and explicit codes agree well with experimental observations of oil-canning in a hood assembly. The small residual dent depth predictions are in line with experimental observations. The method using the implicit code, however, yields lower residual dent depth than that using the explicit code. Because the absolute values of the residual dent depths are small in the cases examined, more work is needed, using examples involving larger residual dent depth, to clearly distinguish between the two procedures.
Technical Paper

Validating Powertrain Controller Systems With the VPACS-HIL Powertrain Simulator

2005-04-11
2005-01-1663
To manage the function of a vehicle's engine, transmission, and related subsystems, almost all modern vehicles make use of one or more electronic controllers running embedded software, henceforth referred to as a Powertrain Controller System or PCS. Fully validating this PCS is a necessary step of vehicle development, and the validation process requires extensive amounts of testing. Traditionally, this validation testing is done with open-loop signal generators, powertrain dynamometers, and real vehicles. Such testing methods either cannot simulate complex control system interactions, or are expensive and subject to variability. To address these concerns while decreasing development time and improving vehicle quality, Ford Motor Company is placing increasing focus on validating a PCS through simulation. One such testing method is a Hardware-in-the-Loop (HIL) simulation, which mates the physical elements of a PCS to a real-time computer simulation of a powertrain.
Technical Paper

Utilization of CAE Tools to Assist Active Glove Box Design

2017-03-28
2017-01-0493
Traditionally, Knee Air Bag (KAB) is constructed of a woven nylon or polyester fabric. Recently, Ford developed an injection molded air bag system for the passenger side called Active Glove Box (AGB). This system integrates a plastic bladder welded between the glove box outer and inner doors. This new system is smaller and lighter, thus improving the roominess and other creature comforts inside the passenger cabin while providing equivalent restraint performance as traditional knee airbag system. This patented technology allows positioning of airbags in new locations within the vehicle, thus giving more freedom to designers. The first application of this technology was standard equipment on the 2015 Ford Mustang. Given that this technology is first in the industry, it was a challenge to design, test and evaluate the performance of the system as there is no benchmark to compare this technology. A CAE driven design methodology was chosen to overcome this challenge.
Technical Paper

Using Computer Aided Engineering to Find and Avoid the Steering Wheel “Nibble” Failure Mode

2005-04-11
2005-01-1399
The paradigm for utilizing computer-aided engineering (CAE) to analyze automotive steering and suspension designs is rapidly changing. CAE's role has expanded beyond mere analysis to designing and improving product reliability and robustness. This paper presents an approach for avoiding the steering wheel nibble failure mode by improving robustness and therefore reliability through the use of CAE. For this paper, reliability is the ability of the system to avoid failure modes. A failure mode is any customer perceived deviation from ideal and avoiding failure modes naturally improves reliability. [1]
Technical Paper

Use of Plastic Trim Fasteners for Automotive Trimming Applications

2017-03-28
2017-01-1304
For many years, the use of in-mold fasteners has been avoided for various reasons including: not fully understanding the load cases in the part, the fear of quality issues occurring, the need for servicing, or the lack of understanding the complexity of all failure modes. The most common solution has been the use of secondary operations to provide attachments, such as, screws, metal clips, heat staking, sonic welding or other methods which are ultimately a waste in the process and an increase in manufacturing costs. The purpose of this paper is to take the reader through the design process followed to design an in-molded attachment clip on plastic parts. The paper explores the design process for in-molded attachment clips beginning with a design concept idea, followed by basic concept testing using a desktop 3D printer, optimizing the design with physical tests and CAE analysis, and finally producing high resolution 3D prototypes for validation and tuning.
Technical Paper

Use of Body Mount Stiffness and Damping In CAE Crash Modeling

2000-03-06
2000-01-0120
This paper reports a study of the dynamic characteristics of body mounts in body on frame vehicles and their effects on structural and occupant CAE results. The body mount stiffness and damping are computed from spring-damper models and component test results. The model parameters are converted to those used in the full vehicle structural model to simulate the vehicle crash performance. An effective body mount in a CAE crash model requires a set of coordinated damping and stiffness to transfer the frame pulse to the body. The ability of the pulse transfer, defined as transient transmissibility[1]1, is crucial in the early part of the crash pulse prediction using a structural model such as Radioss[2]. Traditionally, CAE users input into the model the force-deflection data of the body mount obtained from the component and/or full vehicle tests. In this practice, the body mount in the CAE model is essentially represented by a spring with the prescribed force-deflection data.
Technical Paper

Up-Front Body Structural Designs for Squeak and Rattle Prevention

2003-05-05
2003-01-1523
Squeak and rattle is one of the major concerns in vehicle design for customer satisfaction. Traditionally squeak and rattle problems are found and fixed at a very late design stage due to lack of up-front CAE prevention and prediction tools. A research work at Ford reveals a correlation between the squeak and rattle performance and diagonal distortions at body closure openings and fastener accelerations in an instrument panel. These findings make it possible to assess squeak and rattle performance implications between different body designs using body-in-prime (B-I-P) and vehicle low frequency noise, vibration and harshness (NVH) CAE models at a very early design stage. This paper is concerned with applications of this squeak and rattle assessment method for up-front body designs prior to a prototype stage.
Technical Paper

U-Bolt Pre-Load and Torque Capacity Determination Using Non-Linear CAE

2022-03-29
2022-01-0773
This paper presents a method of using CAE to determine the pre-load and torque applied to a U-Bolt rear Spring Seat. In this paper it is review two U-bolt design and the stresses generated by the pre-load torque applied, based in this study a process to determine the minimal preload and the torque is discussed. By this process it is possible to determine the minimum Torque and the correct pre-load in the U-Bolt element and assuring the correct fastening of the components avoiding over stress in the Bar elements.
X