Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

The Steer-By-Wire Prototype Implementation: Realizing Time Triggered System Design, Fail Silence Behavior and Active Replication with Fault-Tolerance Support

1999-03-01
1999-01-0400
Actual research results in the automotive field show that there is a big potential in increasing active and passive safety by implementing intelligent driver assisting systems. Realizing such safety related system functions requires an electronic system without mechanical or hydraulic backup to de-couple the human interface from the vehicle functions, e.g., steering and braking. Safety critical functions without mechanical backup enforce new requirements in system design. Any faulty behavior of a component within the system must not lead to a malfunction of the overall system. Consequently in the system design fault-tolerance mechanisms in real time must be introduced. Active replication of a functional node is a proper solution to guarantee this real time fault-tolerance. Redundancy management of the functional nodes can be implemented by fail-silent replicas, i.e. a node behaves correctly or does not produce any output at all.
Journal Article

Evaluation of a State of the Art Hydraulic Brake System with Regard to Future Requirements

2016-09-18
2016-01-1927
New technologies like alternative power trains and driver assistance systems have a big impact on brake system development. Most of the development work aims at the improvement of the actuation and modulation components of the brake system. The basic hydraulic network remained nearly the same over decades and still has to meet these new requirements. Previous papers have focused mainly on studying the behavior of single components, like for example the brake hose fluid consumption in detail. Other papers studied the complete system but simplified it extremely, so that some relevant effects are neglected. In this work, one focus is to study the influence of single relevant components, like the hydraulic unit and the hoses on the overall system performance. For this measurements with a complete hydraulic brake system, including a state of the art electromechanical brake booster and single component measurements for identification, are conducted.
Technical Paper

Driving Course Prediction Using Distance Sensor Data

1999-03-01
1999-01-1234
The assignment of vehicles detected by distance sensors to lanes relative to the own vehicle is an important and necessary task for future driver assistance systems like Adaptive Cruise Control (ACC). The collective motion of objects driving in front of the vehicle allows a prediction of the vehicle's own driving course. The method uses not only data of the host vehicle to determine its own trajectory but as well data from a distance sensor supplying distances and angles of objects ahead of the vehicle to determine the trajectories of these objects. Algorithms were developed using an off-line simulation, which was fed with recorded data obtained from a real ACC vehicle. The results show a significant improvement in the quality of the predicted driving course compared to other methods solely based on data of the host vehicle. Particularly in situations of changing curvature, e.g. the beginning of a bend, the algorithm helps to improve the overall system performance of ACC.
Technical Paper

Comprehensive Study on Crashes with Pedestrians on Indian Roads

2019-01-19
2019-26-0004
Pedestrian crashes are a major safety concern worldwide and especially in India. About one in every ten traffic-related fatalities in the country is a pedestrian. In 2016 nearly 15 800 pedestrians are killed in India are mainly exposed to risk when crossing and walking on the road in urban and rural areas. The aim of the study was to understand the pedestrian behavior on the road and to identify characteristics of pedestrian crashes in India. Overall it was aimed to derive countermeasures out from accident contributing factors to improve traffic safety in India. Bosch Accident Research access the accident database of the Road Accident Sampling System for India (RASSI). The present analysis is based on 1779 in-depth accident investigated and reconstructed cases from RASSI. Overall 168 crashes involving 207 pedestrians were analyzed and simulated afterwards. Five different locations involving majorly rural, urban & semi urban areas covered.
Technical Paper

Comparison of a State of the Art Hydraulic Brake System with a Decentralized Hydraulic Brake System Concept for Electric Vehicles

2017-09-17
2017-01-2515
The ongoing changes in the development of new power trains and the requirements due to driver assistance systems and autonomous driving could be the enabler for completely new brake system configurations. The shift in the brake load collective has to be included in the systems requirements for electric vehicles. Many alternative concepts for hydraulic brake systems, even for decentralized configurations, can be found in the literature. For a decentralized system with all state of the art safety functionalities included, four actuators are necessary. Therefore, the single brake module should be as cost-effective as possible. Previous papers introduced systems which are for example based on plunger-like concepts, which are very expensive and heavy due to the needed gearing and design. In this paper a comparison between a state of the art hydraulic brake system using an electromechanical brake booster, and a completely new decentralized hydraulic brake concept is presented.
Technical Paper

Adaptive Cruise Control System Aspects and Development Trends

1996-02-01
961010
This paper is based on the experiences with Adaptive Cruise Control (ACC) systems at BOSCH. Necessary components (especially range sensor, curve sensors, actuators and display) are described, roughly specified, and their respective strength and weaknesses are addressed. The system overview contains the basic structure, the main control strategy and the concept for driver-ACC interaction. Afterwards the principal as well as the current technical limits of ACC systems are discussed. The consequences on traffic flow, safety and driver behavior are emphasized. As an outlook, development trends for extended functionality are given for the next generation of driver assistance systems.
Technical Paper

A Case Study in Applying a Product Line Approach for Car Periphery Supervision Systems

2001-03-05
2001-01-0025
Car Periphery Supervision (CPS) systems comprise a family of automotive systems that are based on sensors installed around the vehicle to monitor its environment. The measurement and evaluation of sensor data enables the realization of several kinds of higher level applications such as parking assistance or blind spot detection. Although a lot of similarity can be identified among CPS applications, these systems are traditionally built separately. Usually, each single system is built with its own electronic control unit, and it is likely that the application software is bound to the controller's hardware. Current systems engineering therefore often leads to a large number of inflexible, dedicated systems in the automobile that together consume a large amount of power, weight, and installation space and produce high manufacturing and maintenance costs.
X