Refine Your Search

Topic

Author

Search Results

Technical Paper

Yaw Rate Sensor for Vehicle Dynamics Control System

1995-02-01
950537
From the beginning of 1995 on, RB will start the production of the Vehicle Dynamics Control System. A key part of this system is the Yaw Rate Sensor described in this paper. The basic requirements for this sensor for automotive applications are: mass producibility, low cost, resistance against environmental influences (such as temperature, vibrations, EMI), stability of all characteristics over life time, high reliability and designed-in safety. Bosch developed a sensor on the basis of the “Vibrating Cylinder”. The sensor will be introduced into mass production in beginning of 1995.
Technical Paper

Vehicle Dynamics Control for Commercial Vehicles

1997-11-17
973284
This paper presents the Vehicle Dynamics Control (VDC) for commercial vehicles developed by BOSCH. The underlying physical concept is discussed in the second section after a short introduction. The third section shows the computer simulation used in the development process. Section four describes the controller structure of the VDC system. In Section five the use and effectiveness of VDC for commercial vehicles is shown in different critical driving situations. This is done by using measured data collected during testing (lane change, circular track) and it demonstrates that the safety improvements achieved for passenger cars are also possible for commercial vehicles.
Technical Paper

VDC, The Vehicle Dynamics Control System of Bosch

1995-02-01
950759
VDC is a new active safety system for road vehicles which controls the dynamic vehicle motion in emergency situations. From the steering angle, the accelerator pedal position and the brake pressure the desired motion is derived while the actual vehicle motion is derived from the yaw rate and the lateral acceleration. The system regulates the engine torque and the wheel brake pressures using traction control components to minimize the difference between the actual and the desired motion. Included is also a safety concept which supervises the proper operation of the components and the software.
Technical Paper

Traction Control (ASR) for Commercial Vehicles. A Further Step Towards Safety on our Roads

1987-11-01
872272
1. Abstract Alongside steering, accelerating and braking are the basic operations in the automobile which are nowadays still left to the driver to perform in their entirety. In performing these basic functions, it may come about that excessive demands are made upon a driver, these arising due to poor road conditions - rain, snow and ice - or as a result of suddenly changing traffic situations. With the introduction of anti-lock braking systems (ABS), a decisive step has been taken to increase active driving and traffic safety. The ABS prevents the lockup of the wheels during overbraking. The vehicle remains steerable and retains stable directional control. Furthermore, in many cases, a shorter braking distance is gained compared to braking with the wheels locked up. BOSCH has been manufacturing and supplying ABS for passenger cars since 1978 and for commercial vehicles and buses since 1981. ABS has proved to be an overwhelming success in practical usage.
Technical Paper

Time Triggered CAN (TTCAN)

2001-03-05
2001-01-0073
Connecting microcontrollers, sensors and actuators by several communication systems is state of the art within the electronic architectures of modern vehicles. The communication among these components is widely based on the event triggered communication on the Controller-Area-Network (CAN) protocol. The arbitrating mechanism of this protocol ensures that all messages are transferred according to the priority of their identifiers and that the message with the highest priority will not be disturbed. In the future some mission critical subnetworks within the upcoming generations of vehicle systems, e.g. x-by-wire systems (xbws), will additionally require deterministic behavior in communication during service. Even at maximum bus load, the transmission of all safety related messages must be guaranteed. Moreover it must be possible to determine the point of time when the message will be transmitted with high precision.
Technical Paper

The Challenge of Precise Characterizing the Specific Large-Span Flows in Urea Dosing Systems for NOx Reduction

2008-04-14
2008-01-1028
The reduction of nitrous oxides in the exhaust gases of internal combustion engines using a urea water solution is gaining more and more importance. While maintaining the future exhaust gas emission regulations, like the Euro 6 for passenger cars and the Euro 5 for commercial vehicles, urea dosing allows the engine management to be modified to improve fuel economy as well. The system manufacturer Robert Bosch has started early to develop the necessary dosing systems for the urea water solution. More than 300.000 Units have been delivered in 2007 for heavy duty applications. Typical dosing quantities for those systems are in the range of 0.01 l/h for passenger car systems and up to 10 l/h for commercial vehicles. During the first years of development and application of urea dosing systems, instantaneous flow measuring devices were used, which were not operating fully satisfactory.
Technical Paper

The ABS 6S/4K - A Modular System for Simplified Installation in Tractors, Semi-trailers and Trailers

1990-10-01
902213
Abstract Today's ABS sytems for commercial vehicles and trailers reflect specific solutions for individual vehicle model wiring and control features. In addition, the chassis mounting requirements for trailer applications uses a separate sealed housing for the relay and other sensitive components. A logical progression of design development resulted in the new ABS 6S/4K open system with the ability of being adaptable to specific vehicle control requirements. A variety of different component arrangements can be accommodated. Accordingly, it does not require a standard wiring harness. Wiring is left optional for the specific vehicle configuration. The housing may be frame mounted without any special protection and therefore can cover both trailer and tractor applications. The housing is designed to provide necessary protection from water and dirt. The electronic senses the peripheral component configuration via a simple “learning” procedure.
Journal Article

Start/Stop Strategies for Two-Wheelers in the Emerging Markets

2013-10-15
2013-32-9125
Fuel economy of two-wheelers is an important factor influencing the purchasing psychology of the consumer within the emerging markets. Additionally, air pollution being a major environmental topic, there is a rising concern about vehicle emissions, especially in the big cities and their metropolitan areas. Potentially, the relatively expensive engine management systems are providing more features and value in comparison to the carburettor counterpart. The combustion system analysis is carried out on a 125 cm3 motorcycle engine and the subsequent numerical simulation comparing the carburettor and the Electronic (Port) Fuel Injection which provides a basis to establish the fuel consumption benefit for the electronic injection systems [1].
Technical Paper

Standardization and Cost Optimization of ABS Ecus

1998-10-19
98C004
ABS has proven to be a contribution to active safety. The introduction of traction control (TC) in 1986 and even more significantly, the introduction of vehicle dynamics control (VDC) in 1995 have been further milestones in this field. The functionality of these systems (ABS, TC, VDC) is mainly determined by the electronic control unit (ECU). A system supplier who is to provide an ECU-platform concept including a large functionality, while meeting customer specific requirements at an optimized price, needs standardization strategies. This paper describes a standardization concept for an ABS ECU, beginning with the basic ABS HW and SW design and the extension to TC and VDC. It also shows the degree of flexibility, the benefits for the vehicle manufacturer and the possible cost optimization for the system supplier.
Technical Paper

Simulation for the Development of the Bosch-VDC

1996-02-01
960486
A new automotive active safely system, the Vehicle Dynamics Control System (VDC) of BOSCH was introduced on the market in 1995. Besides improving the ABS/ASR functions, VDC will also actively support the driver in critical situations of lateral vehicle dynamics. This system includes new ABS/ASR-control algorithms and a superimposed control algorithm, the vehicle dynamics controller. Furthermore, an extension of the standard ABS/ASR-hydraulic system was necessary as well as the development of new automotive sensors. During all phases of the interdisciplinary system development, tests on experimental cars and extensive computer simulations were used in parallel. In order to provide adequate simulation models for different tasks, a modular concept for the simulation tool is important. Furthermore, a transparent and portable application of the control algorithm for both, experiment and simulation, is required.
Journal Article

Side View Assist - The World’s First Rider Assistance System for Two-Wheelers

2016-11-08
2016-32-0052
Abstract The Side View Assist is the World’s first rider assistance system for two-wheelers. This is a Blind Spot Warning system, which uses four ultrasonic sensors to monitor the surrounding of the rider. Whenever there is a vehicle (i.e. a car, truck, or another motorbike) in the rider’s blind spot, the technology warns the rider with an optical signal close to the mirror. This will allow the rider to avoid a collision when changing lanes. In the current vehicle application, Side View Assist is active at speeds ranging from 25 to 80 kilometers per hour and supports riders whenever the difference in relative speed to other road users is small. The system helps to improve safety especially in cities, where heavy traffic makes it necessary to change lanes more often. Originally such systems have been developed for cars and different system solutions for cars have been in serial production for several years.
Technical Paper

Sensor Vision and Collision Warning Systems

2000-11-01
2000-01-C001
Due to an earlier analysis of the interrelation between collisions and advanced driver reaction a significant number of accidents could be avoided through timely threat recognition and appropriate maneuvers for collision avoidance. This may be achieved either by suitable warning to the driver or by automatic support to longitudinal or lateral control of the vehicle. A precondition for the registration of the dangerous situation is the incorporation of appropriate sensors. This leads to an surround sensor vision system accompanied by a matched human machine interface. Many vehicles readily offer ultrasonic reversing aids as add-on systems. Furthermore, long-range radar systems for adaptive cruise control are now coming on the market. New sensor technologies, such as short-range radar and video, which are currently under development, open up a plurality of novel functions thus enhancing driving safety and comfort.
Journal Article

Sensor Data Fusion for Active Safety Systems

2010-10-19
2010-01-2332
Active safety systems will have a great impact in the next generation of vehicles. This is partly originated by the increasing consumer's interest for safety and partly by new traffic safety laws. Control actions in the vehicle are based on an extensive environment model which contains information about relevant objects in vehicle surroundings. Sensor data fusion integrates measurements from different surround sensors into this environment model. In order to avoid system malfunctions, high reliability in the interpretation of the situation, and therefore in the environment model, is essential. Hence, the main idea of data fusion is to make use of the advantages of using multiple sensors and different technologies in order to fulfill these requirements, which are especially high due to autonomous interventions in vehicle dynamics (e. g. automatic emergency braking).
Technical Paper

Predictive On-Board Diagnosis for Hybrid Electric Vehicles with In-Vehicle Navigation Unit

2015-04-14
2015-01-1224
Abstract As the percentage of Hybrid Electric Vehicles (HEV) is increasing, On-Board Diagnosis (OBD) faces new challenges such as limited combustion engine runtime. Moreover, predictive driving strategies for HEV assure that more vehicles are equipped with navigation systems. These systems can provide information about the road conditions such as limit speed, curvature and slope. In this study, navigation road information is used to predict monitoring conditions of OBD functions so that the available OBD time can be used effectively. As an example, catalyst monitoring is considered and a simple vehicle model is proposed which takes velocity and slope prediction from the navigation system to predict torque and exhaust mass flow. The model is composed of a combination of longitudinal motion and a power train torque transition model. Results of this effort are presented for different velocity profiles.
Technical Paper

Predictive Multi-objective Operation Strategy Considering Battery Ageing for Hybrid Electric Vehicles

2018-04-03
2018-01-1011
Abstract Due to the more stringent CO2 targets for vehicles, electrification of powertrains and operation strategies for electrified powertrains have drawn more attention. This paper presents a predictive multi-objective operation strategy for hybrid electric vehicles (HEVs), which simultaneously minimises the fuel consumption and the cycle ageing of traction batteries. The advantages of this proposed strategy are increased performance by using predictive information and high robustness to inaccuracy of predictive information. In this work, the benefits of the developed operation strategies are demonstrated in a strong Hybrid Electric Vehicle (sHEV) with P2-configuration. For the cycle ageing of a lithium-ion battery, an empirical model is built up with Gaussian processes based on experimental data.
Technical Paper

New Electronic Systems Worldwide - The Supplier's View

1986-11-01
861972
Despite the tough environmental conditions facing electronic systems in commercial vehicles, electronics is gaining ground also in these applications. In the drive sector it improves the operation of the main and auxiliary drives, upgrades fuel efficiency and reduces emission pollutant levels. It enhances safety by preventing wheel spinning in braking and acceleration. Electronic displays reduce the number of single indications otherwise needed, thus making for more clarity in information for the driver and facilitating the driver's task. Self-diagnosing and integrated emergency operation (“limp home”) capabilities are to ensure availability, a factor of special importance in commercial vehicles. A data interface standardized as widely as possible would allow add-on systems to be coupled easily and flexibly.
Technical Paper

New Approaches to Electronic Throttle Control

1991-02-01
910085
An electronic control of throttle angle is required for safety systems like traction control (ASR) and for advanced engine management systems with regard to further improvements of driving comfort and fuel economy. For applications, in which only ASR is required, two versions of a new traction control actuator (TCA) have been developed. Their function is based on controlling the effective length of the bowden cable between the accelerator pedal and the throttle. Besides retaining the mechanical linkage to the throttle, the concept has no need for a pedal position sensor, which is necessary for a drive-by-wire system. Design and performance of both actuators are described and their individual advantages are compared. Moreover, the communication of the system with ASR and its behaviour with regard to vehicle dynamics are illustrated.
Journal Article

Motorcycle Stability Control - The Next Generation of Motorcycle Safety and Riding Dynamics

2015-11-17
2015-32-0834
Anti-lock Braking Systems (ABS) for motorcycles have already contributed significantly to the safety of powered two-wheelers (PTW) on public roads by improving bike stability and controllability in emergency braking situations. In order to address further riding situations, another step forward has been achieved with Motorcycle Stability Control (MSC) system. By combining ABS, electronically combined braking system (eCBS), traction control and inertial sensors even in situations like braking and accelerating in corners the riders' safety can be improved. The MSC system controls the distribution of braking and traction forces using an algorithm that takes into account all available vehicle information from wheels, power train and vehicle attitude. With its ability to control fundamental vehicle dynamics, the MSC system will be a basis for further development and integration of comprehensive safety systems.
Technical Paper

More Safety with Vehicle Stability Control

2007-11-28
2007-01-2759
Since introduction of safety belts in the 70s and airbags in the early 80s, these passive safety technologies have become standard in many markets. Remarkable improvement in passive safety, efforts to alter driver behaviour and infrastructural programmes have led to substantial reductions of fatalities in many regions, although the absolute number of highway fatalities increased e.g. in the USA in 2002 to the highest level since 1990. Electronic Stability Control (ESC) as an active safety technology assists the driver to keep the vehicle on the intended track and thereby actively prevents accidents. In 1995 Bosch was the first supplier to introduce ESC for the Mercedes-Benz S-Class, where it is marketed as ESP® - Electronic Stability Program. Since then, Bosch has produced more than 30 million systems worldwide. Many studies have now confirmed that ESC can prevent a vehicle from skidding or rolling over in nearly all driving situations.
Technical Paper

Investigation on Fluid Mechanics of the Regenerative Pump Used in Gasoline Injection Systems

1995-02-01
950077
In order to optimize the inner flow of the regenerative pump used in gasoline injection systems, we carry out experimental and numerical flow investigations. A qualitative analysis of spatial flow phenomena in selected regions of the pump is presented by employing the laser light sheet technique. Therefore, a tenfold enlarged water model is built up, where dynamic similarity with the original flow is achieved. The results of the flow analysis have led to improved geometries which are compared with the original design by measured pump characteristic curves. Furthermore, three-dimensional simulations of the fully developed turbulent flow using a finite-element method are presented. The flow with respect to the rotating impeller is calculated by solving the Reynolds equations in connection with the k-ε-turbulence model.
X