Refine Your Search

Topic

Author

Search Results

Technical Paper

Variable Orifice Geometry Verified on the Two-Phase Nozzle (VRD)

1995-02-01
950081
Innovative solutions for reducing particulate emissions will be necessary in order to comply with the even more stringent exhaust-gas standards of the future. The potential of a diesel nozzle with variable orifice geometry has long been common knowledge in the area of engine construction. But up to now, a fully functional solution of such a nozzle has not appeared which operates with a reduced orifice at low engine speeds and/or low loads. Here with regard to target costing, the requirements implicit in function and manufacture must also be taken into account. Using calculations on nozzle interior flow and injection-spray investigations, it will be shown which nozzle geometries best fulfill the various requirements. In order to achieve low levels of particulate emission in an engine with a combustion chamber designed for optimum use of a hole-type nozzle, the injection-spray direction and its geometry must to a large extent correspond to those of a hole-type nozzle.
Technical Paper

VDC Systems Development and Perspective

1998-02-23
980235
Since its introduction in March 1995, the market demand for Vehicle Dynamic Control systems (VDC) has increased rapidly. Some car manufacturers have already announced their plans to introduce VDC on all their models. Particularly for compact and subcompact cars the system price needs to be reduced without sacrificing safety and performance. Originally designed for optimal performance with economically feasible components (sensors, hydraulics and microcontrollers) and using a unified control approach for all vehicle operating situations the system has been extended to include various drive concepts and has continuously been improved regarding performance, safety and cost. This paper describes the progress made in the development of the Bosch VDC system with regard to the design of the hydraulic system, the sensors, the electronic control unit, the control algorithm and safety.
Technical Paper

Traction Control (ASR) Using Fuel-Injection Suppression - A Cost Effective Method of Engine-Torque Control

1992-02-01
920641
Traction control (ASR) is the logical ongoing development of the antilock braking system (ABS). Due to the high costs involved though, the widespread practice of reducing the engine power by electronic throttle control (or electronic enginepower control) has up to now prevented ASR from becoming as widely proliferated as ABS. A promising method has now been developed in which fuel-injection suppression at individual cylinders is used as a low-price actuator for a budget-priced ASR. First of all, an overview of the possibilities for influencing wheel-torque by means of intervention at the engine and/or brake as a means of reducing driven wheel slip is presented. Then, the system, the control strategy, and the demands on the electronic engine-management system with sequential fuel injection are discussed. The system's possibilities and its limitations are indicated, and fears of damaging effects on the catalytic converter are eliminated.
Technical Paper

The X-By-Wire Concept: Time-Triggered Information Exchange and Fail Silence Support by New System Services

1998-02-23
980555
This paper presents the conceptual model and the fundamental mechanisms for software development in the context of the Brite-EuRam project Safety Related Fault Tolerant Systems in Vehicles (nick-named X-By-Wire). The objective of the X-By-Wire project is to achieve a framework for the introduction of safety related fault tolerant electronic systems without mechanical backup in vehicles. To achieve the required level of fault-tolerance, an X-By-Wire system must be designed as a distributed system comprising a number of fault-tolerant units connected by a reliable real-time communication system. For the communication system, the time-triggered TTP/C real-time communication protocol was selected. TTP/C provides fault-tolerance message transfer, state synchronization, reliable detection of node failures, a global time base, and a distributed membership service. Redundancy is used for masking failures of individual processor nodes and hardware peripherals.
Technical Paper

The Steer-By-Wire Prototype Implementation: Realizing Time Triggered System Design, Fail Silence Behavior and Active Replication with Fault-Tolerance Support

1999-03-01
1999-01-0400
Actual research results in the automotive field show that there is a big potential in increasing active and passive safety by implementing intelligent driver assisting systems. Realizing such safety related system functions requires an electronic system without mechanical or hydraulic backup to de-couple the human interface from the vehicle functions, e.g., steering and braking. Safety critical functions without mechanical backup enforce new requirements in system design. Any faulty behavior of a component within the system must not lead to a malfunction of the overall system. Consequently in the system design fault-tolerance mechanisms in real time must be introduced. Active replication of a functional node is a proper solution to guarantee this real time fault-tolerance. Redundancy management of the functional nodes can be implemented by fail-silent replicas, i.e. a node behaves correctly or does not produce any output at all.
Technical Paper

The Significance of a Reference Architecture in the Automotive Industry

2000-03-06
2000-01-0387
In the automotive industry, a steadily growing number of mono-functional electronic control units (ECUs) with increasing complexity on the one hand and restrictive requirements for power consumption and mounting space on the other hand are forcing an architectural change in car electronics. Computer platforms with a client/server architecture could potentially reduce the number of ECUs in a car drastically, with a commensurate reduction of costs and space, better integration possibilities for enhanced functionality and additional services during the lifetime of a car. One of the problems which arises when those architectures come to the car is coping with the complexity of mainly software-based functionality and reliability issues under the aspect of rapidly evolving hardware infrastructure. The reorganization of car electronics also offers the possibility of a redistribution of functionality in the car which has been designed in the past for specific demands.
Technical Paper

The Robert Bosch In-Line Pump for Diesel Engines, Type MW, Design, Application and Further Development

1979-02-01
790901
The range of Robert Bosch in-line pumps is designed for engines with cylinder outputs of up to 200 kW. Within this family of pumps the MW pump is used in small IDI engines and medium-sized DI engines with cylinder outputs in the region of 30 kW. More stringent exhaust emission legislation and the need to ensure optimum fuel economy call for efficient fuel-injection systems for diesel engines. In both of its designs the new MW pump meets these more exacting requirements and forms the contribution of Robert Bosch GmbH toward developing advanced diesel engines.
Technical Paper

The New Common Rail Fuel System for the Duramax 6600 V8 Diesel Engine

2001-11-12
2001-01-2704
The Bosch Common Rail Fuel Injection System with the new technologies developed for the Duramax 6600 engine offer numerous performance advantages including exhaust emissions control and noise. The layout of the fuel system components and electrical parts is specifically designed to control fuel injection characteristics. The new injector and nozzle technology was integrated to achieve the required system performance. The new 1600bar fuel pump is also a prerequisite for required system performance.
Technical Paper

The Development and Performance of the Compact SCR-Trap System: A 4-Way Diesel Emission Control System

2003-03-03
2003-01-0778
The tightening of Heavy Duty Diesel (HDD) emissions legislation throughout the world is leading to the development of emission control devices to enable HDD engines to meet the new standards. NOx and Particulate Matter (PM) are the key pollutants which these emission control systems need to address. Diesel Particulate Filters (DPFs) are already in use in significant numbers to control PM emissions from HDD vehicles, and Selective Catalytic Reduction (SCR) is a very promising technology to control NOx emissions. This paper describes the development and performance of the Compact SCR-Trap system - a pollution control device comprising a DPF-based system (the Continuously Regenerating Trap system) upstream of an SCR system. The system has been designed to be as easy to package as possible, by minimising the total volume of the system and by incorporating the SCR catalysts on annular substrates placed around the outside of the DPF-based system.
Technical Paper

The Challenge of Precise Characterizing the Specific Large-Span Flows in Urea Dosing Systems for NOx Reduction

2008-04-14
2008-01-1028
The reduction of nitrous oxides in the exhaust gases of internal combustion engines using a urea water solution is gaining more and more importance. While maintaining the future exhaust gas emission regulations, like the Euro 6 for passenger cars and the Euro 5 for commercial vehicles, urea dosing allows the engine management to be modified to improve fuel economy as well. The system manufacturer Robert Bosch has started early to develop the necessary dosing systems for the urea water solution. More than 300.000 Units have been delivered in 2007 for heavy duty applications. Typical dosing quantities for those systems are in the range of 0.01 l/h for passenger car systems and up to 10 l/h for commercial vehicles. During the first years of development and application of urea dosing systems, instantaneous flow measuring devices were used, which were not operating fully satisfactory.
Technical Paper

The ABS 6S/4K - A Modular System for Simplified Installation in Tractors, Semi-trailers and Trailers

1990-10-01
902213
Today's ABS sytems for commercial vehicles and trailers reflect specific solutions for individual vehicle model wiring and control features. In addition, the chassis mounting requirements for trailer applications uses a separate sealed housing for the relay and other sensitive components. A logical progression of design development resulted in the new ABS 6S/4K open system with the ability of being adaptable to specific vehicle control requirements. A variety of different component arrangements can be accommodated. Accordingly, it does not require a standard wiring harness. Wiring is left optional for the specific vehicle configuration. The housing may be frame mounted without any special protection and therefore can cover both trailer and tractor applications. The housing is designed to provide necessary protection from water and dirt. The electronic senses the peripheral component configuration via a simple “learning” procedure.
Technical Paper

Standardization and Cost Optimization of ABS Ecus

1998-10-19
98C004
ABS has proven to be a contribution to active safety. The introduction of traction control (TC) in 1986 and even more significantly, the introduction of vehicle dynamics control (VDC) in 1995 have been further milestones in this field. The functionality of these systems (ABS, TC, VDC) is mainly determined by the electronic control unit (ECU). A system supplier who is to provide an ECU-platform concept including a large functionality, while meeting customer specific requirements at an optimized price, needs standardization strategies. This paper describes a standardization concept for an ABS ECU, beginning with the basic ABS HW and SW design and the extension to TC and VDC. It also shows the degree of flexibility, the benefits for the vehicle manufacturer and the possible cost optimization for the system supplier.
Technical Paper

Simulation Tool Chain for the Estimation of EMC Characteristics of ECU Modules

2007-04-16
2007-01-1591
Electromagnetic Compatibility (EMC) requirements and the effort to fulfill them are increasing steadily in automotive applications. This paper demonstrates the usage of virtual prototyping to efficiently investigate the EMC behavior of a gasoline direct injection system. While the system worked functionally as designed, tests indicated that current and especially future client-specific EMC limits could not be met. The goal of this investigation was to identify and eliminate the cause of EMC emissions using a virtual software prototype including the controller ASIC, boost converter, pi filter, injection valves and wire harness. Applying virtual prototyping techniques it was possible to capture the motor control system in a simulation model which reproduced EMC measurements in the frequency ranges of interest.
Journal Article

Side View Assist - The World’s First Rider Assistance System for Two-Wheelers

2016-11-08
2016-32-0052
The Side View Assist is the World’s first rider assistance system for two-wheelers. This is a Blind Spot Warning system, which uses four ultrasonic sensors to monitor the surrounding of the rider. Whenever there is a vehicle (i.e. a car, truck, or another motorbike) in the rider’s blind spot, the technology warns the rider with an optical signal close to the mirror. This will allow the rider to avoid a collision when changing lanes. In the current vehicle application, Side View Assist is active at speeds ranging from 25 to 80 kilometers per hour and supports riders whenever the difference in relative speed to other road users is small. The system helps to improve safety especially in cities, where heavy traffic makes it necessary to change lanes more often. Originally such systems have been developed for cars and different system solutions for cars have been in serial production for several years. The challenge was to adapt these systems so they would work for two-wheelers as well.
Technical Paper

Sensor Vision and Collision Warning Systems

2000-11-01
2000-01-C001
Due to an earlier analysis of the interrelation between collisions and advanced driver reaction a significant number of accidents could be avoided through timely threat recognition and appropriate maneuvers for collision avoidance. This may be achieved either by suitable warning to the driver or by automatic support to longitudinal or lateral control of the vehicle. A precondition for the registration of the dangerous situation is the incorporation of appropriate sensors. This leads to an surround sensor vision system accompanied by a matched human machine interface. Many vehicles readily offer ultrasonic reversing aids as add-on systems. Furthermore, long-range radar systems for adaptive cruise control are now coming on the market. New sensor technologies, such as short-range radar and video, which are currently under development, open up a plurality of novel functions thus enhancing driving safety and comfort.
Technical Paper

Secondary Air Injection with a New Developed Electrical Blower for Reduced Exhaust Emissions

1994-03-01
940472
Secondary air injection after cold start gives two effects for reduced exhaust emissions: An exothermic reaction at the hot exhaust valves occurs, which increases the temperature of the exhaust gas. It gives sufficient air to the catalyst during the cold start fuel enrichment that is necessary to prevent driveability problems. Handicaps for the wide use of air injection include space constraints, weight and price. An electrical air blower was choosen to best satisfy all these requirements. The development steps are described. The result is a three stage radialblower with extremly high revolutions of about 18000 rpm. The system configuration and the outcome are demonstrated on the new C-Class of Mercedes-Benz. The results show emission reductions higher than 50 %, while also satisfying the development goals of noise, volume, weight and cost requirements.
Technical Paper

Reliability Prediction for Automotive Components in Field Use

2002-07-09
2002-01-2241
This paper presents a model for reliability prediction of motor vehicle components in field use based on guarantee data. The method is an extension of the reliability prediction model from Pauli [1], which was originally developed for the analysis of electronic control units. The model is applied for the first time to body electronic products. Therefore, a generalized failure model is developed. In a case study an electronic actuator is analysed considering a mixed failure model and then compared to a simple failure model approach. The prediction model derives km- and time-dependent reliability characteristics and is proven to be a powerful tool.
Technical Paper

Real-Time Software for In-Vehicle Communication

1996-02-01
960117
This paper describes the architecture and the implementation of a software for the communication between networked in-vehicle ECUs. The communication software is based upon a real-time multitasking operating system. The operating system and the communication software form an application-independent platform for the implementation of distributed ECU software. The software architecture consists of several communication layers and a station management module. The communication layers provide network driver, data transfer services and an application interface that is independent of the used network protocol. The station management module is responsible for configuration and initialization of the communication controller, error detection during operation and error handling. The modula r structure of the architecture supports the simple adaptation of the software to different bus systems and communication controllers.
Journal Article

Procedure for Determining the Allowable Particle Contamination for Diesel Fuel Injection Equipment (FIE)

2009-04-20
2009-01-0870
Increasing injection pressures together with Diesel fuel lubricated Common Rail pumps replacing oil lubricated systems demand a more sophisticated investigation of robustness and durability against particle contamination of fuel. The established way of requiring filtration efficiency levels per lab standard is not significant enough if we look at variable factors like vibration of the fuel filter and viscosity of the fuel. Because these and other factors tremendously influence filtration efficiency, future Diesel FIE cleanliness requirements will need to define an allowable contamination limit downstream of the filter. More precisely, this is not a scalar limit but a contamination collective that considers the varying vehicle filtration and operating environment. This paper describes a procedure for defining allowable contamination limits of the FIE components. The procedure includes sensitivity, robustness and “key life” tests.
Technical Paper

Pressure Modulation in Separate and Integrated Antiskid Systems with Regard to Safety

1984-02-01
840467
The antiskid systems which have been on the market for some time are characterized by the fact that they are separate from the brake power-assist unit and are positioned between the master cylinder and the wheel brakes (separate configuration). At present, integrated antiskid systems are also being prepared for launching on the market. In these systems the hydraulic brake power-assist unit performs the functions of brake boosting and partly also of ABS pressure modulation. The principles of ABS pressure modulation in separate and integrated antiskid systems are compared and questions concerning safety are discussed. With the separate ABS (plunger system, return system) the brake circuits are closed, i.e. when braking and also during ABS operation the volume of brake fluid between the master cylinders and the wheel brake cylinders is closed and separated from the energy supply of the hydraulic brake power-assist unit.
X