Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Using Patterns to Integrate Views in Open Automotive Systems

2001-10-01
2001-01-3396
Automotive product lines promote reuse of software artifacts such as architectures, designs and implementations. System architectures, and especially software architectures, are difficult to create due to the need to support variations. Traditional approaches emphasize the identification and description of generic components, which makes it difficult to support variations among products. The paper proposes an approach for transforming a software architecture to product design through using patterns in a four-way refinement and evolution process. The paper investigates how patterns may be used to verify the conceptual integrity in the view integration procedure to support software sharing in an open automotive system.
Technical Paper

Towards Establishing Continuous-X Pipeline Using Modular Software-in-the-Loop Test Environments

2021-09-22
2021-26-0412
Software-in-the-Loop (SiL) test environments are the ideal virtual platforms for enabling continuous-development, -integration, -testing -delivery or -deployment commonly referred as Continuous-X (CX) of the complex functionalities in the current automotive industry. This trend especially is contributed by several factors such as the industry wide standardization of the model exchange formats, interfaces as well as architecture definitions. The approach of frontloading software testing with SiL test environments is predominantly advocated as well as already adopted by various Automotive OEMs, thereby the demand for innovating applicable methods is increasing. However, prominent usage of the existing monolithic architecture for interaction of various elements in the SiL environment, without regarding the separation between functional and non-functional test scope, is reducing the usability and thus limiting significantly the cost saving potential of CX with SiL.
Technical Paper

Thermodynamic Analysis and Benchmark of Various Gasoline Combustion Concepts

2006-04-03
2006-01-0231
Novel Combustion technologies and strategies show high potential in reducing the fuel consumption of gasoline spark ignition (SI) engines. In this paper, a comparison between various gasoline combustion concepts at two representative engine operating points is shown. Advantages of the combustion concepts are analyzed using thermodynamic split of losses method. In this paper, a tool for thermodynamic assessment (Split of Losses) of conventional and new operating strategies of SI engine and its derivatives is used. Technologies, like variable valve actuation and/or gasoline direct injection, allow new strategies to run the SI engine unthrottled with early inlet valve closing (SI-VVA) combined with high EGR, charge stratification (SI-STRAT) and controlled auto ignition (CAI), also known as gasoline homogeneous charge compression ignition (HCCI). These diverse combustion concepts show thermodynamic gains that stem from several, often different sources.
Technical Paper

The X-By-Wire Concept: Time-Triggered Information Exchange and Fail Silence Support by New System Services

1998-02-23
980555
This paper presents the conceptual model and the fundamental mechanisms for software development in the context of the Brite-EuRam project Safety Related Fault Tolerant Systems in Vehicles (nick-named X-By-Wire). The objective of the X-By-Wire project is to achieve a framework for the introduction of safety related fault tolerant electronic systems without mechanical backup in vehicles. To achieve the required level of fault-tolerance, an X-By-Wire system must be designed as a distributed system comprising a number of fault-tolerant units connected by a reliable real-time communication system. For the communication system, the time-triggered TTP/C real-time communication protocol was selected. TTP/C provides fault-tolerance message transfer, state synchronization, reliable detection of node failures, a global time base, and a distributed membership service. Redundancy is used for masking failures of individual processor nodes and hardware peripherals.
Technical Paper

The Steer-By-Wire Prototype Implementation: Realizing Time Triggered System Design, Fail Silence Behavior and Active Replication with Fault-Tolerance Support

1999-03-01
1999-01-0400
Actual research results in the automotive field show that there is a big potential in increasing active and passive safety by implementing intelligent driver assisting systems. Realizing such safety related system functions requires an electronic system without mechanical or hydraulic backup to de-couple the human interface from the vehicle functions, e.g., steering and braking. Safety critical functions without mechanical backup enforce new requirements in system design. Any faulty behavior of a component within the system must not lead to a malfunction of the overall system. Consequently in the system design fault-tolerance mechanisms in real time must be introduced. Active replication of a functional node is a proper solution to guarantee this real time fault-tolerance. Redundancy management of the functional nodes can be implemented by fail-silent replicas, i.e. a node behaves correctly or does not produce any output at all.
Technical Paper

The Robert Bosch In-Line Pump for Diesel Engines, Type MW, Design, Application and Further Development

1979-02-01
790901
The range of Robert Bosch in-line pumps is designed for engines with cylinder outputs of up to 200 kW. Within this family of pumps the MW pump is used in small IDI engines and medium-sized DI engines with cylinder outputs in the region of 30 kW. More stringent exhaust emission legislation and the need to ensure optimum fuel economy call for efficient fuel-injection systems for diesel engines. In both of its designs the new MW pump meets these more exacting requirements and forms the contribution of Robert Bosch GmbH toward developing advanced diesel engines.
Technical Paper

The Impact of a Combustion Chamber Optimization on the Mixture Formation and Combustion in a CNG-DI Engine in Stratified Operation

2017-03-28
2017-01-0779
A previous study by the authors has shown an efficiency benefit of up to Δηi = 10 % for stratified operation of a high pressure natural gas direct injection (DI) spark ignition (SI) engine compared to the homogeneous stoichiometric operation with port fuel injection (PFI). While best efficiencies appeared at extremely lean operation at λ = 3.2, minimum HC emissions were found at λ = 2. The increasing HC emissions and narrow ignition time frames in the extremely lean stratified operation have given the need for a detailed analysis. To further investigate the mixture formation and flame propagation und these conditions, an optically accessible single-cylinder engine was used. The mixture formation and the flame luminosity have been investigated in two perpendicular planes inside the combustion chamber.
Technical Paper

The Challenge of Precise Characterizing the Specific Large-Span Flows in Urea Dosing Systems for NOx Reduction

2008-04-14
2008-01-1028
The reduction of nitrous oxides in the exhaust gases of internal combustion engines using a urea water solution is gaining more and more importance. While maintaining the future exhaust gas emission regulations, like the Euro 6 for passenger cars and the Euro 5 for commercial vehicles, urea dosing allows the engine management to be modified to improve fuel economy as well. The system manufacturer Robert Bosch has started early to develop the necessary dosing systems for the urea water solution. More than 300.000 Units have been delivered in 2007 for heavy duty applications. Typical dosing quantities for those systems are in the range of 0.01 l/h for passenger car systems and up to 10 l/h for commercial vehicles. During the first years of development and application of urea dosing systems, instantaneous flow measuring devices were used, which were not operating fully satisfactory.
Technical Paper

The ABS 6S/4K - A Modular System for Simplified Installation in Tractors, Semi-trailers and Trailers

1990-10-01
902213
Today's ABS sytems for commercial vehicles and trailers reflect specific solutions for individual vehicle model wiring and control features. In addition, the chassis mounting requirements for trailer applications uses a separate sealed housing for the relay and other sensitive components. A logical progression of design development resulted in the new ABS 6S/4K open system with the ability of being adaptable to specific vehicle control requirements. A variety of different component arrangements can be accommodated. Accordingly, it does not require a standard wiring harness. Wiring is left optional for the specific vehicle configuration. The housing may be frame mounted without any special protection and therefore can cover both trailer and tractor applications. The housing is designed to provide necessary protection from water and dirt. The electronic senses the peripheral component configuration via a simple “learning” procedure.
Technical Paper

Technology For Electronic Diesel Control

2004-01-16
2004-28-0063
In the last decades the development of Diesel engines has made substantial progress. New, powerful and scalable injection systems have been introduced. In consequence Diesel systems are continuously gaining market share in many places of the world. Advanced direct injection engines with systems like the electronically controlled distributer pump, the unit injection system and of course the common rail system are replacing the chamber engines in all automotive applications. This is all unthinkable without the electronic management of these injection systems by means of Electronic Diesel Control units (EDC). The following presentation describes the status and some future trend of technology of EDCs with particular emphasis on functional and on software development. It also outlines the challenge of global automotive industry that requires global development and application services from its tier 1 suppliers.
Technical Paper

Study on Boosted Direct Injection SI Combustion with Ethanol Blends and the Influence on the Ignition System

2011-10-04
2011-36-0196
The stricter worldwide emission legislation and growing demands for lower fuel consumption and CO2-emission require for significant efforts to improve combustion efficiency while satisfying the emission quality demands. Ethanol fuel combined with boosting on direct injection gasoline engines provides a particularly promising and, at the same time, a challenging approach. Brazil is one of the main Ethanol fuel markets with its E24 and E100 fuel availability, which covers a large volume of the national needs. Additionally, worldwide Ethanol availability is becoming more and more important, e.g., in North America and Europe. Considering the future flex-fuel engine market with growing potentials identified on downsized spark ignition engines, it becomes necessary to investigate the synergies and challenges of Ethanol boosted operation. Main topic of the present work focuses on the operation of Ethanol blends up to E100 at high loads up to 30 bar imep.
Journal Article

Start/Stop Strategies for Two-Wheelers in the Emerging Markets

2013-10-15
2013-32-9125
Fuel economy of two-wheelers is an important factor influencing the purchasing psychology of the consumer within the emerging markets. Additionally, air pollution being a major environmental topic, there is a rising concern about vehicle emissions, especially in the big cities and their metropolitan areas. Potentially, the relatively expensive engine management systems are providing more features and value in comparison to the carburettor counterpart. The combustion system analysis is carried out on a 125 cm3 motorcycle engine and the subsequent numerical simulation comparing the carburettor and the Electronic (Port) Fuel Injection which provides a basis to establish the fuel consumption benefit for the electronic injection systems [1].
Technical Paper

Spray Formation of High Pressure Swirl Gasoline Injectors Investigated by Two-Dimensional Mie and LIEF Techniques

1999-03-01
1999-01-0498
Two-dimensional Mie and LIEF techniques were applied to investigate the spray formation of a high pressure gasoline swirl injector in a constant volume chamber. The results obtained provide information on the propagation of liquid fuel and fuel vapor for different fuel pressures and ambient conditions. Spray parameters like tip penetration, cone angles and two new defined parameters describing the radial fuel distribution were used to quantify the fuel distributions measured. Simultaneous detection of liquid and vapor fuel was applied to study the influence of ambient temperature, injector temperature and ambient pressure on the evaporating spray.
Technical Paper

Software Controlled Homogeneity Analysis of Headlamp Light Distribution

1999-03-01
1999-01-0700
This paper will describe the procedures that will enhance the possibilities of qualitative evaluation of headlamp light distributions. A basis will be the description of a light distribution coming only from reflector geometries, i.e. headlamps with clear outer lens design. Further steps of evaluation, as visualization and homogeneity analysis become more and more important for a headlamp evaluation. The recently developed tools can support both the headlamp manufacturer and the car manufacturer in finding a common understanding in headlamp performance of a projected car at a very early stage of development.
Technical Paper

Simulation, Performance and Quality Evaluation of ABS and ASR

1988-02-01
880323
The article describes the methods, which are employed in order to ensure high performance, safety and quality of ABS and ASR. System behaviour is evaluated and optimized by computer simulation. Moreover, a real-time simulator has been developed by which the consequences of hardware defects can be investigated systematically, Despite the increasing use of simulation the testing of vehicles remains the most important tool for system evaluation. For that purpose, a digital data acquisition system has been developed and objective evaluation criteria have been established. In order to achieve high product quality the Failure Mode and Effect Analysis (FMEA) is carried out at an early phase of development. Another prerequisite for high product quality is thorough durability and endurance testing before release of production.
Technical Paper

Simulation Tool Chain for the Estimation of EMC Characteristics of ECU Modules

2007-04-16
2007-01-1591
Electromagnetic Compatibility (EMC) requirements and the effort to fulfill them are increasing steadily in automotive applications. This paper demonstrates the usage of virtual prototyping to efficiently investigate the EMC behavior of a gasoline direct injection system. While the system worked functionally as designed, tests indicated that current and especially future client-specific EMC limits could not be met. The goal of this investigation was to identify and eliminate the cause of EMC emissions using a virtual software prototype including the controller ASIC, boost converter, pi filter, injection valves and wire harness. Applying virtual prototyping techniques it was possible to capture the motor control system in a simulation model which reproduced EMC measurements in the frequency ranges of interest.
Journal Article

Side View Assist - The World’s First Rider Assistance System for Two-Wheelers

2016-11-08
2016-32-0052
The Side View Assist is the World’s first rider assistance system for two-wheelers. This is a Blind Spot Warning system, which uses four ultrasonic sensors to monitor the surrounding of the rider. Whenever there is a vehicle (i.e. a car, truck, or another motorbike) in the rider’s blind spot, the technology warns the rider with an optical signal close to the mirror. This will allow the rider to avoid a collision when changing lanes. In the current vehicle application, Side View Assist is active at speeds ranging from 25 to 80 kilometers per hour and supports riders whenever the difference in relative speed to other road users is small. The system helps to improve safety especially in cities, where heavy traffic makes it necessary to change lanes more often. Originally such systems have been developed for cars and different system solutions for cars have been in serial production for several years. The challenge was to adapt these systems so they would work for two-wheelers as well.
Technical Paper

Safety and Security Considerations of New Closure Systems

2000-03-06
2000-01-1304
A closure system for automotive security and driver comfort has been developed. The system combines a passive entry system and an electronic door latch system. The passive entry system utilises a single chip transponder for vehicle immobilisation, passive entry and remote control functionality. The form factor free transponder enables the integration into a key fob or a smart card. The system can be activated by either pulling the door handle or by using a push button transponder. Due to the inductive coupling between the transponder and the vehicle mounted antennas, the vehicle door or trunk opens on successful verification as if there were no locks. Additionally, inside the vehicle, the transponder can be used as a far range immobiliser. The electronic door latch system utilises electronically controlled latches.
Technical Paper

Safety Support by an Automotive Middleware

2005-04-11
2005-01-1530
The amount of software integrated into today's vehicles growths exponential and tends to be a patchwork of non interrelated applications. However the interrelationship gets more and more intensive as applications start to cooperate and therefore communicate with each other. By introducing a domain exceeding middleware concept we want applications to experience a high level of integration and enable outsourcing of features applications have in common.
Technical Paper

Real-Time Software for In-Vehicle Communication

1996-02-01
960117
This paper describes the architecture and the implementation of a software for the communication between networked in-vehicle ECUs. The communication software is based upon a real-time multitasking operating system. The operating system and the communication software form an application-independent platform for the implementation of distributed ECU software. The software architecture consists of several communication layers and a station management module. The communication layers provide network driver, data transfer services and an application interface that is independent of the used network protocol. The station management module is responsible for configuration and initialization of the communication controller, error detection during operation and error handling. The modula r structure of the architecture supports the simple adaptation of the software to different bus systems and communication controllers.
X