Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Virtual Testing of Front Camera Module

2023-04-11
2023-01-0823
The front camera module is a fundamental component of a modern vehicle’s active safety architecture. The module supports many active safety features. Perception of the road environment, requests for driver notification or alert, and requests for vehicle actuation are among the camera software’s key functions. This paper presents a novel method of testing these functions virtually. First, the front camera module software is compiled and packaged in a Docker container capable of running on a standard Linux computer as a software in the loop (SiL). This container is then integrated with the active safety simulation tool that represents the vehicle plant model and allows modeling of test scenarios. Then the following simulation components form a closed loop: First, the active safety simulation tool generates a video data stream (VDS). Using an internet protocol, the tool sends the VDS to the camera SiL and other vehicle channels.
Technical Paper

Virtual Powertrain Calibration at GM Becomes a Reality

2010-10-19
2010-01-2323
GM's R oad-to- L ab-to- M ath (RLM) initiative is a fundamental engineering strategy leading to higher quality design, reduced structural cost, and improved product development time. GM started the RLM initiative several years ago and the RLM initiative has already provided successful results. The purpose of this paper is to detail the specific RLM efforts at GM related to powertrain controls development and calibration. This paper will focus on the current state of the art but will also examine the history and the future of these related activities. This paper will present a controls development environment and methodology for providing powertrain controls developers with virtual (in the absence of ECU and vehicle hardware) calibration capabilities within their current desktop controls development environment.
Technical Paper

Virtual Development of Control Coordinator for Engine and Aftertreatment Architecture Equipped with Diesel Fuel Burner

2023-08-28
2023-24-0103
Heating devices are effective technologies to strengthen emission robustness of AfterTreatment Systems (ATS) and to guarantee emission compliance in the new boundaries given by upcoming legislations. Moreover, they allow to manage the ATS warm-up independently from engine operating conditions, thereby reducing the need for specific combustion strategies. Within heating devices, an attractive solution to provide the required thermal power without mandating a 48V platform is the fuel burner. In this work, a model-based control coordinator to manage the interaction between engine, ATS and fuel burner device has been developed, virtually validated, and optimized. The control function features a burner model and a control logic to deliver the needed amount of thermal energy, while ensuring ATS hardware protection.
Technical Paper

Vehicle Dynamics, Stability and Control

2014-04-01
2014-01-0134
In the last years the number of electronic controllers of vehicle dynamics applied to chassis components has increased dramatically. They use lookup table of the primary order vehicle global parameters as yaw rate, lateral acceleration, steering angle, car velocity, that define the ideal behavior of the vehicle. They are usually based on PID controllers which compare the actual behavior of every measured real vehicle data to the desired behavior, from look up table. The controller attempts to keep the measured quantities the same as the tabled quantities by using ESP, TC (brakes and throttle), CDC (control shocks absorbers), EDIFF(active differential) and 4WS (rear wheels active toe). The performances of these controls are good but not perfect. The improvement can be achieved by replacement of the lookup tables with a fast vehicle model running in parallel to the real vehicle.
Technical Paper

Validation of a Theoretical Model for the Correction of Heat Transfer Effects in Turbocharger Testing through a Quasi-3D Model

2020-04-14
2020-01-1010
In the last few years, the effect of diabatic test conditions on compressor performance maps has been widely investigated, leading some Authors to propose different correction models. The accuracy of turbocharger performance map constitute the basis for the tuning and validation of a numerical method, usually adopted for the prediction of engine-turbocharger matching. Actually, it is common practice in automotive applications to use simulation codes, which can either require measured compression ratio and efficiency maps as input values or calculate them “on the fly” throughout specific sub-models integrated in the numerical procedures. Therefore, the ability to correct the measured performance maps taking into account internal heat transfer would allow the implementation of commercial simulation codes used for engine-turbocharger matching calculations.
Journal Article

Validation of a LES Spark-Ignition Model (GLIM) for Highly-Diluted Mixtures in a Closed Volume Combustion Vessel

2021-04-06
2021-01-0399
The establishment of highly-diluted combustion strategies is one of the major challenges that the next generation of sustainable internal combustion engines must face. The desirable use of high EGR rates and of lean mixtures clashes with the tolerable combustion stability. To this aim, the development of numerical models able to reproduce the degree of combustion variability is crucial to allow the virtual exploration and optimization of a wide number of innovative combustion strategies. In this study ignition experiments using a conventional coil system are carried out in a closed volume combustion vessel with side-oriented flow generated by a speed-controlled fan. Acquisitions for four combinations of premixed propane/air mixture quality (Φ=0.9,1.2), dilution rate (20%-30%) and lateral flow velocity (1-5 m/s) are used to assess the modelling capabilities of a newly developed spark-ignition model for large-eddy simulation (GLIM, GruMo-UniMORE LES Ignition Model).
Technical Paper

Validation of Diesel Combustion Models with Turbulence Chemistry Interaction and Detailed Kinetics

2019-09-09
2019-24-0088
Detailed and fast combustion models are necessary to support design of Diesel engines with low emission and fuel consumption. Over the years, the importance of turbulence chemistry interaction to correctly describe the diffusion flame structure was demonstrated by a detailed assessment with optical data from constant-volume vessel experiments. The main objective of this work is to carry out an extensive validation of two different combustion models which are suitable for the simulation of Diesel engine combustion. The first one is the Representative Interactive Flamelet model (RIF) employing direct chemistry integration. A single flamelet formulation is generally used to reduce the computational time but this aspect limits the capability to reproduce the flame stabilization process. To overcome such limitation, a second model called tabulated flamelet progress variable (TFPV) is tested in this work.
Technical Paper

Utilizing a Tracked 3-Dimensional Acoustic Probe in the Development of an Automotive Front-of-Dash

2017-06-05
2017-01-1869
During the development of an automotive acoustic package, valuable information can be gained by visualizing the acoustic energy flow through the Front-of-Dash (FOD) when a sound source is placed in the engine compartment. Two of the commonly used methods for generating the visual map of the acoustic field include Sound Intensity measurements and array technologies. An alternative method is to use a tracked 3-dimensional acoustic probe to scan and visualize the FOD in real-time when the sound source is injecting noise into the engine compartment. The scan is used to focus the development of the FOD acoustic package on the weakest areas by identifying acoustic leaks and locations with low Transmission Loss. This paper provides a brief discussion of the capabilities of the tracked 3-D acoustic probe, and presents examples of the implementation of the probe during the development of the FOD acoustic package for two mid-sized sedans.
Technical Paper

Using Deep Learning to Predict the Engine Operating Point in Real-Time

2021-04-06
2021-01-0186
The engine operating point (EOP), which is determined by the engine speed and torque, is an important part of a vehicle's powertrain performance and it impacts FC, available propulsion power, and emissions. Predicting instantaneous EOP in real-time subject to dynamic driver behaviour and environmental conditions is a challenging problem, and in existing literature, engine performance is predicted based on internal powertrain parameters. However, a driver cannot directly influence these internal parameters in real-time and can only accommodate changes in driving behaviour and cabin temperature. It would be beneficial to develop a direct relationship between the vehicle-level parameters that a driver could influence in real-time, and the instantaneous EOP. Such a relationship can be exploited to dynamically optimize engine performance.
Technical Paper

Update on Gasoline Fuel Property and Gasoline Additives Impacts on Stochastic Preignition with Review of Global Market Gasoline Quality

2022-08-30
2022-01-1071
Stochastic Preignition (SPI) is an abnormal combustion phenomenon for internal combustion engines (ICE), which has been a significant impact to automotive companies developing high efficiency, turbocharged, direct fuel injection, spark ignited engines. It is becoming clearer what fuel properties are related to the cause of SPI, whether directly with fuel preparation in the cylinder, or mechanisms related to the deposit build-up which contributes to initial and follow-on SPI events. The purpose of this paper is to provide a summary of global market gasoline fuel properties with special attention given to properties and specific compounds from the fuel and fuel additives that can contribute to SPI and the deposit build-up in engines. Based on a review of the global fuel quality, it appears that the fuel quality has not caught up to meet the technology requirements for fuel economy from modern technology engines.
Journal Article

Understanding the Dynamic Evolution of Cyclic Variability at the Operating Limits of HCCI Engines with Negative Valve Overlap

2012-04-16
2012-01-1106
An experimental study is performed for homogeneous charge compression ignition (HCCI) combustion focusing on late phasing conditions with high cyclic variability (CV) approaching misfire. High CV limits the feasible operating range and the objective is to understand and quantify the dominating effects of the CV in order to enable controls for widening the operating range of HCCI. A combustion analysis method is developed for explaining the dynamic coupling in sequences of combustion cycles where important variables are residual gas temperature, combustion efficiency, heat release during re-compression, and unburned fuel mass. The results show that the unburned fuel mass carries over to the re-compression and to the next cycle creating a coupling between cycles, in addition to the well known temperature coupling, that is essential for understanding and predicting the HCCI behavior at lean conditions with high CV.
Journal Article

Truck Utility & Functionality in the GM 2-Mode Hybrid

2010-04-12
2010-01-0826
The present production General Motors 2-Mode Hybrid system for full-size SUVs and pickup trucks integrates truck utility functions with a full hybrid system. The 2-mode hybrid system incorporates two electro-mechanical power-split operating modes with four fixed-gear ratios. The combination provides fuel savings from electric assist, regenerative braking and low-speed electric vehicle operation. The combination of two power-split modes reduces the amount of mechanical power that is converted to electric power for continuously variable transmission operation, meeting the utility required for SUVs and trucks. This paper describes how fuel economy functionality was blended with full-size truck utility functions. Truck functions described include: Manual Range Select, Cruise Control, 4WD-Low and continuous high load operation.
Journal Article

Transmission Output Chain Spin Loss Study

2017-03-28
2017-01-1135
Transmission spin loss has significant influence on the vehicle fuel economy. Transmission output chain may contribute up to 10~15% of the total spin loss. However, the chain spin loss information is not well documented. An experimental study was carried out with several transmission output chains and simulated transmission environment in a testing box. The studies build the bases for the chain spin loss modeling and depicted the influences of the speed, the sprocket sizes, the oil levels, the viscosity, the temperatures and the baffle. The kriging method was employed for the parameter sensitivity study. A closed form of empirical model was developed. Good correlation was achieved.
Technical Paper

Traditional and Electronic Solutions to Mitigate Electrified Vehicle Driveline Noises

2017-06-05
2017-01-1755
Hybrid powertrain vehicles inherently create discontinuous sounds during operation. The discontinuous noise created from the electrical motors during transition states are undesirable since they can create tones that do not correlate with the dynamics of the vehicle. The audible level of these motor whines and discontinuous tones can be reduced via common noise abatement techniques or reducing the amount of regeneration braking. One electronic solution which does not affect mass or fuel economy is Masking Sound Enhancement (MSE). MSE is an algorithm that uses the infotainment system to mask the naturally occurring discontinuous hybrid drive unit and driveline tones. MSE enables a variety of benefits, such as more aggressive regenerative braking strategies which yield higher levels of fuel economy and results in a more pleasing interior vehicle powertrain sound. This paper will discuss the techniques and signals used to implement MSE in a hybrid powertrain equipped vehicle.
Journal Article

Towards the Use of Eulerian Field PDF Methods for Combustion Modeling in IC Engines

2014-04-01
2014-01-1144
Detailed chemistry and turbulence-chemistry interaction need to be properly taken into account for a realistic combustion simulation of IC engines where advanced combustion modes, multiple injections and stratified combustion involve a wide range of combustion regimes and require a proper description of several phenomena such as auto-ignition, flame stabilization, diffusive combustion and lean premixed flame propagation. To this end, different approaches are applied and the most used ones rely on the well-stirred reactor or flamelet assumption. However, well-mixed models do not describe correctly flame structure, while unsteady flamelet models cannot easily predict premixed flame propagation and triple flames. A possible alternative for them is represented by transported probability density functions (PDF) methods, which have been applied widely and effectively for modeling turbulent reacting flows under a wide range of combustion regimes.
Journal Article

Towards the LES Simulation of IC Engines with Parallel Topologically Changing Meshes

2013-04-08
2013-01-1096
The implementation and the combination of advanced boundary conditions and subgrid scale models for Large Eddy Simulation (LES) in the multi-dimensional open-source CFD code OpenFOAM® are presented. The goal is to perform reliable cold flow LES simulations in complex geometries, such as in the cylinders of internal combustion engines. The implementation of a boundary condition for synthetic turbulence generation upstream of the valve port and of the compressible formulation of the Wall-Adapting Local Eddy-viscosity sgs model (WALE) is described. The WALE model is based on the square of the velocity gradient tensor and it accounts for the effects of both the strain and the rotation rate of the smallest resolved turbulent fluctuations and it recovers the proper y₃ near-wall scaling for the eddy viscosity without requiring dynamic procedure; hence, it is supposed to be a very reliable model for ICE simulation.
Technical Paper

Towards H2 High-Performance IC Engines: Strategies for Control and Abatement of Pollutant Emissions

2023-08-28
2023-24-0108
In future decarbonized scenarios, hydrogen is widely considered as one of the best alternative fuels for internal combustion engines, allowing to achieve zero CO2 emissions at the tailpipe. However, NOx emissions represent the predominant pollutants and their production has to be controlled. In this work different strategies for the control and abatement of pollutant emissions on a H2-fueled high-performance V8 twin turbo 3.9L IC engine are tested. The characterization of pollutant production on a single-cylinder configuration is carried out by means of the 1D code Gasdyn, considering lean and homogeneous conditions. The NOx are extremely low in lean conditions with respect to the emissions legislation limits, while the maximum mass flow rate remains below the turbocharger technical constraint limit at λ=1 only.
Technical Paper

Torque Ripples in Electric Vehicle Drive Quality in Open and Closed Loop Control Environments

2021-04-06
2021-01-0981
Torque ripple of electric motors is a unique feature in Battery Electric Vehicles (BEV) affecting vehicle performance. It is one of the disturbances from electric motors resulting in unpleasant vehicle fore-aft vibrations at specific vehicle speeds. In this study, the torque ripple modeling and simulation procedure has been developed. Critical modeling contents in a full vehicle ADAMS model and a brief overview of the propulsion control are described. Analytical data sets for torque fluctuations (torque ripple) from a couple of different sources are incorporated in the model. The CAE simulation procedure was applied to simulate vehicle performances of a General Motors Battery Electric Vehicle in an early vehicle design phase. Torque ripple phenomena are simulated both in an open-loop and closed-loop propulsion control environment to see how much vehicle fore-aft vibration suppression is achieved by the motor control methods.
Technical Paper

Torque Ripple Cancellation to Reduce Electric Motor Noise for Electric Vehicles

2024-04-09
2024-01-2215
Electric motor whine is a major NVH source for electric vehicles. Traditional mitigation methods focus on e-motor hardware optimization, which requires long development cycles and may not be easily modified when the hardware is built. This paper presents a control- and software-based strategy to reduce the most dominant motor order of an IPM motor for General Motors’ Ultium electric propulsion system, using the patented active Torque Ripple Cancellation (TRC) technology with harmonic current injection. TRC improves motor NVH directly at the source level by targeting the torque ripple excitations, which are caused by the electromagnetic harmonic forces due to current ripples. Such field forces are actively compensated by superposition of a phase-shifted force of the same spatial order by using of appropriate current.
Journal Article

Toothed Chain CVT: Opportunities and Challenges

2017-03-14
2017-01-9677
A toothed chain continuously variable transmission concept is studied. By designing positive engagement at top overdrive ratio, we explored the potential to improve CVT mechanical efficiency. The low cost solution could improve fuel economy by 0.7% in FTP composite cycle. Preliminary multi-body dynamic simulation is also completed using VL-Motion to concept-proof the technical feasibility of disengagement and engagement. To address the noise issue resulted from abandoning the random pitch design in production chain, we proposed an alternate chain pitch sequence but more experimental data is required to validate the design.
X