Refine Your Search

Topic

Author

Search Results

Technical Paper

Transient Particulate Emissions from Diesel Buses During the Central Business District Cycle

1996-02-01
960251
Particulate emissions from heavy-duty buses were measured in real time under conditions encountered during the standard Central Business District (CBD) driving cycle. The buses tested were equipped with 1994 Detroit Diesel Engine Corporation 6V92-TA engines, and some included after treatment devices on the exhaust. Instantaneous, time-resolved measurements of CO2 and amorphous carbon concentrations were obtained using an optical extinction technique and compared to simultaneous results obtained using conventional dilution tunnel sampling methods. Good agreement was obtained between the real-time extinction measurements and the diluted CO2 and cycle-integrated filter measurements. The instantaneous measurements revealed that acceleration transients accounted for roughly 80% of the particulate mass emitted during the cycle but only about 45% of the fuel consumption.
Journal Article

Transient Liquid Penetration of Early-Injection Diesel Sprays

2009-04-20
2009-01-0839
Diesel low-temperature combustion strategies often rely on early injection timing to allow sufficient fuel-ambient mixing to avoid NOx and soot-forming combustion. However, these early injection timings permit the spray to penetrate into a low ambient temperature and density environment where vaporization is poor and liquid impingement upon the cylinder liner and piston bowl are more likely to occur. The objective of this study is to measure the transient liquid and vapor penetration at early-injection conditions. High-speed Mie-scatter and shadowgraph imaging are employed in an optically accessible chamber with a free path of 100 mm prior to wall impingement and using a single-spray injector. The ambient temperature and density within the chamber are well-controlled (uniform) and selected to simulate in-cylinder conditions when injection occurs at -40 crank-angle degrees (CAD) or fewer before top-dead center (TDC).
Technical Paper

Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector

2020-04-14
2020-01-0830
An accurate prediction of internal nozzle flow in fuel injector offers the potential to improve predictions of spray computational fluid dynamics (CFD) in an engine, providing a coupled internal-external calculation or by defining better rate of injection (ROI) profile and spray angle information for Lagrangian parcel computations. Previous research has addressed experiments and computations in transparent nozzles, but less is known about realistic multi-hole diesel injectors compared to single axial-hole fuel injectors. In this study, the transient injector opening and closing is characterized using a transparent multi-hole diesel injector, and compared to that of a single axial hole nozzle (ECN Spray D shape). A real-size five-hole acrylic transparent nozzle was mounted in a high-pressure, constant-flow chamber. Internal nozzle phenomena such as cavitation and gas exchange were visualized by high-speed long-distance microscopy.
Technical Paper

Towards Human Friendly Hydraulics - Passive Teleoperation of Hydraulic Equipment Using a Force Feedback Joystick

2002-03-19
2002-01-1492
Hydraulic systems, as power source and transmission, offer many advantages over electromechanical or purely mechanical counterparts in terms of power density, flexibility and portability. Many hydraulic systems require touching and contacting the physical environments; and many of these systems are directly controlled by human. If hydraulic systems are passive, they would be safer to interact with, and easier for human to control. In this paper, we describe our current research in developing bilateral passive teleoperated hydraulic machines which a human operator controls via a force feedback joystick. Two key developments are 1) methodologies to passify the electrohydraulic valves as a two-port device, and 2) the passive teleoperation controllers.
Journal Article

Study of Soot Formation and Oxidation in the Engine Combustion Network (ECN), Spray A: Effects of Ambient Temperature and Oxygen Concentration

2013-04-08
2013-01-0901
Within the Engine Combustion Network (ECN) spray combustion research frame, simultaneous line-of-sight laser extinction measurements and laser-induced incandescence (LII) imaging were performed to derive the soot volume fraction (fv). Experiments are conducted at engine-relevant high-temperature and high-pressure conditions in a constant-volume pre-combustion type vessel. The target condition, called "Spray A," uses well-defined ambient (900 K, 60 bar, 22.8 kg/m₃, 15% oxygen) and injector conditions (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K). Extinction measurements are used to calibrate LII images for quantitative soot distribution measurements at cross sections intersecting the spray axis. LII images are taken after the start of injection where quasi-stationary combustion is already established.
Technical Paper

Solid Particle Number and Mass Emissions from Lean and Stoichiometric Gasoline Direct Injection Engine Operation

2018-04-03
2018-01-0359
In this work, engine-out particle mass (PM) and particle number (PN) emissions were experimentally examined from a gasoline direct injection (GDI) engine operating in two lean combustion modes and one stoichiometric mode with a fuel of known properties. Ten steady state operating points, two constant speed load steps, and an engine cold start were examined. Results showed that solid particles emitted from the engine under steady state stoichiometric conditions had a uniquely broad size distribution that was relatively flat between the diameters of 10 and 100 nm. In most operating conditions, lean homogenous modes can achieve lower particle emissions than stoichiometric modes while improving engine thermal efficiency. Alternatively, lean stratified operating modes resulted in significantly higher PN and PM emissions than both lean homogeneous and stoichiometric modes with increased efficiency only at low engine load.
Technical Paper

Real Time Measurement of Volatile and Solid Exhaust Particles Using a Catalytic Stripper

1995-02-01
950236
A system has been developed that allows near real time measurements of total, volatile, and nonvolatile particle concentrations in engine exhaust. It consists of a short section of heated catalyst, a cooling coil, and an electrical aerosol analyzer. The performance of this catalytic stripper system has been characterized with nonvolatile (NaCl), volatile sulfate ((NH4)2 SO4), and volatile hydrocarbon (engine oil) particles with diameters ranging from 0.05-0.5 μm. The operating temperature of 300°C gives essentially complete removal of volatile sulfate and hydrocarbon particles, but also leads to removal of 15-25% of solid particles. This system has been used to determine total, volatile, and nonvolatile particle concentrations in the exhaust of a Diesel engine and a spark ignition engine. Volatile volume fractions measured in Diesel exhaust with the catalytic stripper system increased from 19-65% as the equivalence ratio (load) decreased from 0.64-0.13.
Technical Paper

Quantitative Measurements of Residual and Fresh Charge Mixing in a Modern SI Engine Using Spontaneous Raman Scattering

1999-03-01
1999-01-1106
Line-imaging of Raman scattered light is used to simultaneously measure the mole fractions of CO2, H2O, N2, O2, and fuel (premixed C3H8) in a modern 4-valve spark-ignition engine operating at idle. The measurement volume consists of 16 adjacent sub-volumes, each 0.27 mm in diameter × 0.91 mm long, giving a total measurement length of 14.56 mm. Measurements are made 3 mm under the centrally-located spark plug, offset 3 mm from the spark plug center towards the exhaust valves. Data are taken in 15 crank angle degree increments starting from top center before the intake stroke (-360 CAD) through top center of the compression stroke (0 CAD).
Technical Paper

Penetration and combustion characterization of cavitating and non-cavitating fuel injectors under diesel engine conditions

2016-04-05
2016-01-0860
This work investigates the effects of cavitation on spray characteristics by comparing measurements of liquid and vapor penetration as well as ignition delay and lift-off length. A smoothed-inlet, converging nozzle (nominal KS1.5) was compared to a sharp-edged nozzle (nominal K0) in a constant-volume combustion vessel under thermodynamic conditions consistent with modern compression ignition engines. Within the near-nozzle region, the K0 nozzle displayed larger radial dispersion of the liquid as compared to the KS1.5 nozzle, and shorter axial liquid penetration. Moving downstream, the KS1.5 jet growth rate increased, eventually reaching a growth rate similar to the K0 nozzle while maintaining a smaller radial width. The increasing spreading angle in the far field creates a virtual origin, or mixing offset, several millimeters downstream for the KS1.5 nozzle.
Technical Paper

Overview of Engine Combustion Research at Sandia National Laboratories

1999-04-27
1999-01-2246
The objectives of this paper are to describe the ongoing projects in diesel engine combustion research at Sandia National Laboratories' Combustion Research Facility and to detail recent experimental results. The approach we are employing is to assemble experimental hardware that mimic realistic engine geometries while enabling optical access. For example, we are using multi-cylinder engine heads or one-cylinder versions of production heads mated to one-cylinder engine blocks. Optical access is then obtained through a periscope in an exhaust valve, quartz windows in the piston crown, windows in spacer plates just below the head, or quartz cylinder liners. We have three diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, and a one-cylinder Caterpillar engine to evaluate combustion of alternative diesel fuels.
Technical Paper

Optimizing the Scavenging System for a Two-Stroke Cycle, Free Piston Engine for High Efficiency and Low Emissions: A Computational Approach

2003-03-03
2003-01-0001
A free piston internal combustion (IC) engine operating on high compression ratio (CR) homogeneous charge compression ignition (HCCI) combustion is being developed by Sandia National Laboratories to significantly improve the thermal efficiency and exhaust emissions relative to conventional crankshaft-driven SI and Diesel engines. A two-stroke scavenging process recharges the engine and is key to realizing the efficiency and emissions potential of the device. To ensure that the engine's performance goals can be achieved the scavenging system was configured using computational fluid dynamics (CFD), zero- and one-dimensional modeling, and single step parametric variations. A wide range of design options was investigated including the use of loop, hybrid-loop and uniflow scavenging methods, different charge delivery options, and various operating schemes. Parameters such as the intake/exhaust port arrangement, valve lift/timing, charging pressure and piston frequency were varied.
Technical Paper

Off-shoring EMS and the Barrier of Test-in-Reliability

2008-10-07
2008-01-2712
The history of off-road equipment manufacturing has been based on proven designs and long times between model updates. In sharp contrast with this strategy is the electronic manufacturing services (EMS) industry. The EMS industry is driven by the larger consumer product industry's continuing pressure for lower costs. Because of this, EMS tools, processes, and practices have evolved to support rapid technology and component changes. However the increasing consumer demand for features like better user-interfaces, more efficient fuel consumption, and the desire for increased operational controls in equipment have forced the off-road industry to increase the frequency of product updates to meet customers' needs. Equipment manufacturers make running changes leading to a “Learning-by-doing” development and manufacturing process. But rapid changes sometimes have an unpredictable impact on the reliability of the final product.
Technical Paper

Numerical Investigation of Near Nozzle Flash-Boiling Spray in an Axial-Hole Transparent Nozzle

2020-04-14
2020-01-0828
Understanding and prediction of flash-boiling spray behavior in gasoline direct-injection (GDI) engines remains a challenge. In this study, computational fluid dynamics (CFD) simulations using the homogeneous relaxation model (HRM) for not only internal nozzle flow but also external spray were evaluated using CONVERGE software and compared to experimental data. High-speed extinction imaging experiments were carried out in a real-size axial-hole transparent nozzle installed at the tip of machined GDI injector fueled with n-pentane under various ambient pressure conditions (Pa/Ps = 0.07 - 1.39). The width of the spray during injection was assessed by means of projected liquid volume, but the structure and timing for boil-off of liquid within the sac of the injector were also assessed after the end of injection, including cases with different designed sac volumes.
Technical Paper

Novel Three-Dimensional Ceramic Lattices as Catalyst Supports and Diesel Particulate Traps

2003-03-03
2003-01-0838
A novel direct-fabrication technique (robocasting) was used to produce periodic lattices of ceramic rods. The macrostructure is a three-dimensional mesh with controlled porosity in all dimensions but no line-of-sight pathways. These ceramic lattices can function as catalyst supports for gas combustion, and possibly self-regenerating filters for diesel particulates. Compared to the traditional two-dimensional “honeycomb” structured extrudates, the three-dimensional structures have high surface to volume ratios and highly turbulent flow. The flow behaviors of these ceramic lattices and the resulting enhancements in catalytic performance over traditional supports have been demonstrated for propane and methane combustion. Similar tests are underway for the selective catalytic reduction (SCR) of NOx. The potential utility of these structures for diesel particulate trapping will also be discussed.
Technical Paper

More Leaders and Fewer Initiatives: Key Ideas for the Future of Engineering

2015-04-14
2015-01-0411
Panel Discussions held at the SAE World Congress in both 2013 and 2014 observed that a shortage of good quality engineering talent formed a chronic and major challenge. (“Good quality” refers to applicants that would be shortlisted for interview.) While doubts have been expressed in some quarters, the shortage is confirmed by automotive sector employers and the Panel's view was that it was symptomatic of a range of issues, all of which have some bearing on the future of the profession. Initiatives to improve recruitment and retention have had varying degrees of success. Efforts need to be intensified in primary schools where negative perceptions develop and deepen. Schemes like AWIM that operate on a large scale and are designed to supplement school curricula should operate at an international level. Universities represent the entry point into the engineering profession and their role in the recruitment process as well as education and training is crucial.
Technical Paper

Modeling Chemistry in Lean NOx Traps Under Reducing Conditions

2006-10-16
2006-01-3446
A set of elementary surface reactions is proposed for modeling the chemistry in a lean NOx trap during regeneration (reduction of stored NOx). The proposed reaction mechanism can account for the observed product distribution from the trap over a range of temperatures and inlet gas compositions similar to those expected for realistic operation. The mechanism includes many reactions already discussed in the literature, together with some hypothesized reactions that are required to match observations from temperature programmed reactor experiments with a commercial lean NOx trap catalyst. Preliminary results indicate that the NOx trap regeneration and byproduct formation rates can be effectively captured by using a relatively compact set of elementary reactions.
Journal Article

Mixture Formation in Direct Injection Hydrogen Engines: CFD and Optical Analysis of Single- and Multi-Hole Nozzles

2011-09-11
2011-24-0096
This paper describes the validation of a CFD code for mixture preparation in a direct injection hydrogen-fueled engine. The cylinder geometry is typical of passenger-car sized spark-ignited engines, with a centrally located injector. A single-hole and a 13-hole nozzle are used at about 100 bar and 25 bar injection pressure. Numerical results from the commercial code Fluent (v6.3.35) are compared to measurements in an optically accessible engine. Quantitative planar laser-induced fluorescence provides phase-locked images of the fuel mole-fraction, while single-cycle visualization of the early jet penetration is achieved by a high-speed schlieren technique. The characteristics of the computational grids are discussed, especially for the near-nozzle region, where the jets are under-expanded. Simulation of injection from the single-hole nozzle yields good agreement between numerical and optical results in terms of jet penetration and overall evolution.
Journal Article

Measuring Diesel Ash Emissions and Estimating Lube Oil Consumption Using a High Temperature Oxidation Method

2009-06-15
2009-01-1843
Diesel engine ash emissions are composed of the non-combustible portions of diesel particulate matter derived mainly from lube oil, and over time can degrade diesel particulate filter performance. This paper presents results from a high temperature oxidation method (HTOM) used to estimate ash emissions, and engine oil consumption in real-time. Atomized lubrication oil and diesel engine exhaust were used to evaluate the HTOM performance. Atomized fresh and used lube oil experiments showed that the HTOM reached stable particle size distributions and concentrations at temperatures above 700°C. The HTOM produced very similar number and volume weighted particle size distributions for both types of lube oils. The particle number size distribution was unimodal, with a geometric mean diameter of about 23 nm. The volume size distribution had a geometric volume mean diameter of about 65 nm.
Technical Paper

LIF and Flame-Emission Imaging of Liquid Fuel Films and Pool Fires in an SI Engine During a Simulated Cold Start

1997-02-24
970866
Video imaging has been used to investigate the evolution of liquid fuel films on combustion chamber walls during a simulated cold start of a port fuel-injected engine. The experiments were performed in a single-cylinder research engine with a production, four-valve head and a window in the piston crown. Flood-illuminated laser-induced fluorescence was used to observe the fuel films directly, and color video recording of visible emission from pool fires due to burning fuel films was used as an indirect measure of film location. The imaging techniques were applied to a comparative study of open and closed valve injection, for coolant temperatures of 20, 40 and 60 °C. In general, for all cases it is shown that fuel films form in the vicinity of the intake valve seats.
Technical Paper

Investigation of the Relationship Between DI Diesel Combustion Processes and Engine-Out Soot Using an Oxygenated Fuel

2004-03-08
2004-01-1400
The relationship between combustion processes and engine-out soot was investigated in an optically accessible DI diesel engine using diethylene glycol diethyl ether (DGE) fuel, a viable diesel oxygenate. The high oxygen content of DGE enables operation without soot emissions at higher loads than with a hydrocarbon fuel. The high cetane number of DGE enables operation at charge-gas temperatures below those required for current diesel fuels, which may be advantageous for reducing NOx emissions. In-cylinder optical measurements of flame lift-off length and natural luminosity were obtained simultaneously with engine-out soot measurements while varying charge-gas density and temperature. The local mixture stoichiometry at the lift-off length was characterized by a parameter called the oxygen ratio that was estimated from the measured flame lift-off length using an entrainment correlation for non-reacting sprays.
X