Refine Your Search

Topic

Author

Search Results

Journal Article

Visualization of Pre-Chamber Combustion and Main Chamber Jets with a Narrow Throat Pre-Chamber

2022-03-29
2022-01-0475
Pre-chamber combustion (PCC) has re-emerged in recent last years as a potential solution to help to decarbonize the transport sector with its improved engine efficiency as well as providing lower emissions. Research into the combustion process inside the pre-chamber is still a challenge due to the high pressure and temperatures, the geometrical restrictions, and the short combustion durations. Some fundamental studies in constant volume combustion chambers (CVCC) at low and medium working pressures have shown the complexity of the process and the influence of high pressures on the turbulence levels. In this study, the pre-chamber combustion process was investigated by combustion visualization in an optically-accessible pre-chamber under engine relevant conditions and linked with the jet emergence inside the main chamber. The pre-chamber geometry has a narrow-throat. The total nozzle area is distributed in two six-hole rows of nozzle holes.
Journal Article

Vehicle Demonstration of Naphtha Fuel Achieving Both High Efficiency and Drivability with EURO6 Engine-Out NOx Emission

2013-04-08
2013-01-0267
Demand for transport energy is growing but this growth is skewed heavily toward commercial transport, such as, heavy road, aviation, marine and rail which uses heavier fuels like diesel and kerosene. This is likely to lead to an abundance and easy availability of lighter fractions like naphtha, which is the product of the initial distillation of crude oil. Naphtha will also require lower energy to produce and hence will have a lower CO₂ impact compared to diesel or gasoline. It would be desirable to develop engine combustion systems that could run on naphtha. Many recent studies have shown that running compression ignition engines on very low Cetane fuels, which are very similar to naphtha in their auto-ignition behavior, offers the prospect of developing very efficient, clean, simple and cheap engine combustion systems. Significant development work would be required before such systems could power practical vehicles.
Technical Paper

The Physical and Chemical Effects of Fuel on Gasoline Compression Ignition

2019-04-02
2019-01-1150
In the engine community, gasoline compression ignition (GCI) engines are at the forefront of research and efforts are being taken to commercialize an optimized GCI engine in the near future. GCI engines are operated typically at Partially Premixed Combustion (PPC) mode as it offers better control of combustion with improved combustion stability. While the transition in combustion homogeneity from convectional Compression Ignition (CI) to Homogenized Charge Compression Ignition (HCCI) combustion via PPC has been comprehensively investigated, the physical and chemical effects of fuel on GCI are rarely reported at different combustion modes. Therefore, in this study, the effect of physical and chemical properties of fuels on GCI is investigated. In-order to investigate the reported problem, low octane gasoline fuels with same RON = 70 but different physical properties and sensitivity (S) are chosen.
Technical Paper

Some Insights on the Stochastic Nature of Knock and the Evolution of Hot Spots in the End-Gas During the Engine Cycle from Experimental Measurements of Knock Onset and Knock Intensity

2017-10-08
2017-01-2233
Knock in spark ignition engines is stochastic in nature. It is caused by autoignition in hot spots in the unburned end-gas ahead of the expanding flame front. Knock onset in an engine cycle can be predicted using the Livengood-Wu integral if the variation of ignition delay with pressure and temperature as well as the pressure and temperature variation with crank angle are known. However, knock intensity (KI) is determined by the evolution of the pressure wave following knock onset. In an earlier paper (SAE 2017-01-0689) we showed that KI can be approximated by KI = Z (∂T/∂x)-2 at a fixed operating condition, where Z is a function of Pko, the pressure, and (∂T/∂x) is the temperature gradient in the hot spot at knock onset. Then, from experimental measurements of KI and Pko, using five different fuels, with the engine operating at boosted conditions, a probability density function for (∂T/∂x) was established.
Technical Paper

Simultaneous Negative PLIF and OH* Chemiluminescence Imaging of the Gas Exchange and Flame Jet from a Narrow Throat Pre-Chamber

2020-09-15
2020-01-2080
Pre-chamber combustion (PCC) is a promising engine combustion concept capable of extending the lean limit at part load. The engine experiments in the literature showed that the PCC could achieve higher engine thermal efficiency and much lower NOx emission than the spark-ignition engine. Improved understanding of the detailed flow and combustion physics of PCC is important for optimizing the PCC combustion. In this study, we investigated the gas exchange and flame jet from a narrow throat pre-chamber (PC) by only fueling the PC with methane in an optical engine. Simultaneous negative acetone planar laser-induced fluorescence (PLIF) imaging and OH* chemiluminescence imaging were applied to visualize the PC jet and flame jet from the PC, respectively. Results indicate a delay of the PC gas exchange relative to the built-up of the pressure difference (△ P) between PC and the main chamber (MC). This should be due to the gas inertia inside the PC and the resistance of the PC nozzle.
Technical Paper

Reduced Gasoline Surrogate (Toluene/n-Heptane/iso-Octane) Chemical Kinetic Model for Compression Ignition Simulations

2018-04-03
2018-01-0191
Toluene primary reference fuel (TPRF) (mixture of toluene, iso-octane and heptane) is a suitable surrogate to represent a wide spectrum of real fuels with varying octane sensitivity. Investigating different surrogates in engine simulations is a prerequisite to identify the best matching mixture. However, running 3D engine simulations using detailed models is currently impossible and reduction of detailed models is essential. This work presents an AramcoMech reduced kinetic model developed at King Abdullah University of Science and Technology (KAUST) for simulating complex TPRF surrogate blends. A semi-decoupling approach was used together with species and reaction lumping to obtain a reduced kinetic model. The model was widely validated against experimental data including shock tube ignition delay times and premixed laminar flame speeds. Finally, the model was utilized to simulate the combustion of a low reactivity gasoline fuel under partially premixed combustion conditions.
Technical Paper

Primary Reference Fuels (PRFs) as Surrogates for Low Sensitivity Gasoline Fuels

2016-04-05
2016-01-0748
Primary Reference Fuels (PRFs) - binary mixtures of n-heptane and iso-octane based on Research Octane Number (RON) - are popular gasoline surrogates for modeling combustion in spark ignition engines. The use of these two component surrogates to represent real gasoline fuels for simulations of HCCI/PCCI engines needs further consideration, as the mode of combustion is very different in these engines (i.e. the combustion process is mainly controlled by the reactivity of the fuel). This study presents an experimental evaluation of PRF surrogates for four real gasoline fuels termed FACE (Fuels for Advanced Combustion Engines) A, C, I, and J in a motored CFR (Cooperative Fuels Research) engine. This approach enables the surrogate mixtures to be evaluated purely from a chemical kinetic perspective. The gasoline fuels considered in this study have very low sensitivities, S (RON-MON), and also exhibit two-stage ignition behavior.
Technical Paper

Partially Premixed Combustion of Gasoline Type Fuels Using Larger Size Nozzle and Higher Compression Ratio in a Diesel Engine

2013-10-14
2013-01-2539
If fuels that are more resistant to auto-ignition are injected near TDC in compression ignition engines, they ignite much later than diesel fuel and combustion occurs when the fuel and air have had more chance to mix. This helps to reduce NOX and smoke emissions at much lower injection pressures compared to a diesel fuel. However, PPCI (Partially Premixed Compression Ignition) operation also leads to higher CO and HC at low loads and higher heat release rates at high loads. These problems can be significantly alleviated by managing the mixing through injector design (e.g. nozzle size and centreline spray angle) and changing CR (Compression Ratio). This work describes results of running a single-cylinder diesel engine on fuel blends by using three different nozzle design (nozzle size: 0.13 mm and 0.17 mm, centreline spray angle: 153° and 120°) and two different CRs (15.9:1 and 18:1).
Technical Paper

Parametric Study to Optimize Gasoline Compression Ignition Operation under Low Load Condition Using CFD

2021-04-06
2021-01-0440
The effects of intake pressure (Pin), start of injection (SOI), injection pressure (Pinj), injection split ratio (Qsplit), internal and external exhaust gas recirculation rates were varied to optimize several key parameters at a partially pre-mixed combustion low load/low speed condition using CFD. These include indicated specific fuel consumption (ISFC), combustion phasing (CA50), maximum rate of pressure rise (MRPR), maximum cylinder pressure (Pmax), indicated specific NOx (sNOx), indicated specific hydrocarbons (sHC) and Filter Smoke Number (FSN) emissions. Low-load point (6 bar indicated mean effective pressure (IMEP), 1500 revolutions per minute (RPM)) was selected where Pin varied between 1.25 and 1.5 bar, SOI between -100 and -10 crank angle degree (CAD) after top dead center (aTDC), Pinj between 100 and 200 bar, split ratio between 0 and 0.5, EGR between 0 and 45% and internal EGR measured by rebreathing valve height was varied between 0 and 4.5 mm.
Journal Article

On Knock Intensity and Superknock in SI Engines

2017-03-28
2017-01-0689
Most studies on knock ignore the stochastic nature of knock and focus on the onset of knock which is determined by chemical kinetics. This paper focuses on knock intensity (KI) which is determined by the evolution of the pressure wave following knock onset in a hot spot and highlights the stochastic processes involved. KI is defined in this study as the maximum peak-to-peak pressure fluctuation that follows the onset of knock. It depends on ξ = (a/ua) where ua is the speed of the autoignition front and a is the speed of sound. When ua is small, KI can be related to the product of a parameter Z, which depends on Pko, the pressure at knock onset and the square of (∂x/∂T), which is the inverse of the gradient of temperature with distance in the hot spot. Both Z and (∂x/∂T) were calculated using measured KI and Pko for hundreds of individual knocking cycles for different fuels.
Technical Paper

Octane-on-Demand as an Enabler for Highly Efficient Spark Ignition Engines and Greenhouse Gas Emissions Improvement

2015-04-14
2015-01-1264
This paper explores the potential for reducing transport-related greenhouse gas (GHG) emissions by introducing high-efficiency spark-ignition engines with a dual-fuel injection system to customize the octane of the fuels based on real-time engine requirements. It is assumed that a vehicle was equipped with two fuel tanks and two injection systems; one port fuel injection and one direct injection line separately. Each tank carried low octane and high octane fuel so that real-time octane blending was occurred in the combustion chamber when needed (Octane On-Demand: OOD). A refinery naphtha was selected for low octane fuel (RON=61), because of its similarity to gasoline properties but a less processed, easier to produce without changing a refinery configuration. Three oxygenates were used for high octane knock-resistant fuels in a direct injection line: methanol, MTBE, and ETBE.
Technical Paper

Numerical Simulations of High Reactivity Gasoline Fuel Sprays under Vaporizing and Reactive Conditions

2018-04-03
2018-01-0292
Gasoline compression ignition (GCI) engines are becoming more popular alternative for conventional spark engines to harvest the advantage of high volatility. Recent experimental study demonstrated that high reactivity gasoline fuel can be operated in a conventional mixing controlled combustion mode producing lower soot emissions than that of diesel fuel under similar efficiency and NOx level [1]. Therefore, there is much interest in using gasoline-like fuels in compression ignition engines. In order to improve the fidelity of simulation-based GCI combustion system development, it is mandatory to enhance the prediction of spray combustion of gasoline-like fuels. The purpose of this study is to model the spray characteristics of high reactivity gasoline fuels and validate the models with experimental results obtained through an optically accessible constant volume vessel under vaporizing [2] and reactive conditions [3].
Technical Paper

Modeling of Heating and Evaporation of FACE I Gasoline Fuel and its Surrogates

2016-04-05
2016-01-0878
The US Department of Energy has formulated different gasoline fuels called ''Fuels for Advanced Combustion Engines (FACE)'' to standardize their compositions. FACE I is a low octane number gasoline fuel with research octane number (RON) of approximately 70. The detailed hydrocarbon analysis (DHA) of FACE I shows that it contains 33 components. This large number of components cannot be handled in fuel spray simulation where thousands of droplets are directly injected in combustion chamber. These droplets are to be heated, broken-up, collided and evaporated simultaneously. Heating and evaporation of single droplet FACE I fuel was investigated. The heating and evaporation model accounts for the effects of finite thermal conductivity, finite liquid diffusivity and recirculation inside the droplet, referred to as the effective thermal conductivity/effective diffusivity (ETC/ED) model.
Technical Paper

Machine Learning and Response Surface-Based Numerical Optimization of the Combustion System for a Heavy-Duty Gasoline Compression Ignition Engine

2021-04-06
2021-01-0190
The combustion system of a heavy-duty diesel engine operated in a gasoline compression ignition mode was optimized using a CFD-based response surface methodology and a machine learning genetic algorithm. One common dataset obtained from a CFD design of experiment campaign was used to construct response surfaces and train machine learning models. 128 designs were included in the campaign and were evaluated across three engine load conditions using the CONVERGE CFD solver. The design variables included piston bowl geometry, injector specifications, and swirl ratio, and the objective variables were fuel consumption, criteria emissions, and mechanical design constraints. In this study, the two approaches were extensively investigated and applied to a common dataset. The response surface-based approach utilized a combination of three modeling techniques to construct response surfaces to enhance the performance of predictions.
Journal Article

Machine Learning Model for Spark-Assisted Gasoline Compression Ignition Engine

2022-03-29
2022-01-0459
The study showcases the strength of machine learning (ML) models in imitating the operation of an advanced engine concept - the gasoline compression ignition (GCI) - at low loads. The GCI engine is prone to exceeding the limits of criteria emissions at such loads, especially at the cold start when the catalyst is not activated. One proposition to accelerate catalyst light-off is using spark-ignition. This, however, adds an extra level of complexity in identifying an optimum operation point. The ML models can be a useful tool in guiding the engine calibration process. In this study, the ML models are trained on GCI engine experiments, covering different intake conditions, injection strategies, and spark settings. The models can predict seven engine performance parameters: fuel consumption, four engine-out emissions, exhaust temperature, and coefficient of variation (COV) in indicated mean effective pressure (IMEP).
Technical Paper

Low RON Gasoline Calibration on a Multi-Cylinder Compression Ignition Engine to Fulfill the Euro 6d Regulation

2017-09-04
2017-24-0091
Reducing the CO2 footprint, limiting the pollutant emissions and rebalancing the ongoing shift demand toward middle-distillate fuels are major concerns for vehicle manufacturers and oil refiners. In this context, gasoline-like fuels have been recently identified as good candidates. Straight run naphtha, a refinery stream derived from the atmospheric crude oil distillation process, allows for a reduction of both NOx and particulate emissions when used in compression-ignition engines. CO2 benefits are also expected thanks to naphtha’s higher H/C ratio and energy content compared to diesel. In previous studies, wide ranges of Cetane Number (CN) naphtha fuels have been evaluated and CN 35 naphtha fuel has been selected. The assessment and the choice of the required engine hardware adapted to this fuel, such as the compression ratio, bowl pattern, nozzle design and air-path technology, have been performed on a light-duty single cylinder compression-ignition engine.
Technical Paper

Knock and Pre-Ignition Limits on Utilization of Ethanol in Octane-on-Demand Concept

2019-09-09
2019-24-0108
Octane-on-Demand (OoD) is a promising technology for reducing greenhouse emissions from automobiles. The concept utilizes a low-octane fuel for low and mid load operating conditions, and a high-octane additive is added at high load operating conditions. Researchers have focused on the minimum ethanol content required for operating at high load conditions when the low-octane fuel becomes knock limited. However, it is also widely known that ethanol has a high tendency to pre-ignite, which has been linked with its high laminar flame speed and surface ignition tendency. Moreover, ethanol has a lower stoichiometric air-fuel ratio, requiring a larger injected fuel mass per cycle. A larger fuel mass increases the potential for oil dilution by the liquid fuel, creating precursors for pre-ignition. Hence, the limits on ethanol addition owing to pre-ignition also need consideration before the technology can be implemented.
Technical Paper

Knock Prediction Using a Simple Model for Ignition Delay

2016-04-05
2016-01-0702
An earlier paper has shown the ability to predict the phasing of knock onset in a gasoline PFI engine using a simple ignition delay equation for an appropriate surrogate fuel made up of toluene and PRF (TPRF). The applicability of this approach is confirmed in this paper in a different engine using five different fuels of differing RON, sensitivity, and composition - including ethanol blends. An Arrhenius type equation with a pressure correction for ignition delay can be found from interpolation of previously published data for any gasoline if its RON and sensitivity are known. Then, if the pressure and temperature in the unburned gas can be estimated or measured, the Livengood-Wu integral can be estimated as a function of crank angle to predict the occurrence of knock. Experiments in a single cylinder DISI engine over a wide operating range confirm that this simple approach can predict knock very accurately.
Journal Article

Jet Characteristics of a Narrow Throat Pre-Chamber and Influence on the Main-Chamber Combustion

2022-08-30
2022-01-1006
Lean combustion is one of the most applied methods to increase engine efficiency and maintain a good trade-off with engine emissions. The pre-chamber combustion (PCC) is one of the most promising combustion concepts to extend the lean operating limits of the engine. The Narrow throat pre-chamber has shown better lean limit extension compared to other ignition sources. The pre-chamber jets and the main-chamber combustion were studied in a Heavy-Duty optical engine using methane fuel. The tested conditions covered global excess air ratios (λ), between 1.9 to 2.3. The combustion process was recorded using three collection systems: (a) Natural Flame Luminosity (NFL) with a temporal resolution of 0.1 CAD; (b) OH* Chemiluminescence, and (c) CH* Chemiluminescence with a temporal resolution of 0.2 CAD for both. The propagating velocity of the reacting jets was studied using Combustion Image Velocimetry (CIV) based on bottom view images of the main chamber.
Journal Article

Investigation into Light Duty Dieseline Fuelled Partially-Premixed Compression Ignition Engine

2011-04-12
2011-01-1411
Conventional diesel-fuelled Partially Premixed Compression Ignition (PPCI) engines have been investigated by many researchers previously. However, the ease of ignition and difficulty of vaporization of diesel fuel make it imperfect for PPCI combustion. In this study, dieseline (blending of diesel and gasoline) was looked into as the Partially Premixed Compression Ignition fuel for its combination of two fuel properties, ignition-delay-increasing characteristics and higher volatility, which make it more suitable for PPCI combustion compared to neat diesel. A series of tests were carried out on a Euro IV light-duty common-rail diesel engine, and different engine modes, from low speed/load to middle speed/load were all tested, under which fuel blend ratios, EGR rates, injection timings and quantities were varied. The emissions, fuel consumption and combustion stability of this dieseline-fuelled PPCI combustion were all investigated.
X