Refine Your Search

Topic

Author

Search Results

Technical Paper

Variation in Squish Length and Swirl to Reach Higher Levels of EGR in a CNG Engine

2019-01-15
2019-01-0081
Gaseous methane fuel for internal combustion engines have proved to be a competitive source of propulsion energy for heavy duty truck engines. Using biogas can even reduce the carbon footprint of the truck to near-zero levels, creating fully environmentally friendly transport. Gas engines have already been on the market and proved to be a popular alternative for buses and waste transport. However, for long haulage these gas engines have not been on par with the equivalent diesel engines. To improve the power and efficiency of EURO VI gas engines running stoichiometrically, a direct way forward is adding more boost pressure and spark advance in combination with more EGR to mitigate knock. Using in-cylinder turbulence to achieve higher mixing rate, the fuel can still be combusted efficiently despite the increased fraction of inert gases.
Technical Paper

Validation of a Simplified Model for Combustion and Emission Formation in Diesel Engines Based on Correlations for Spray Penetration and Dispersion, Gas Entrainment into Sprays and Flame Lift-off

2010-05-05
2010-01-1494
A simplified combustion and emission formation model for diesel engines has been developed in a project where the long term objective is to predict emissions during transient operation. The intended application implies that the final model must be both computationally inexpensive and comprehensive so that it can be used for optimization of engine control variables when coupled to full-engine simulation software. As starting point, the proposed model uses diesel spray correlations established in combustion vessels regarding spray penetration, dispersion, gas entrainment, ignition and flame lift-off. It has been found that with minor adaption, these correlations are valid also for combustion in an engine. By assuming a fully mixing controlled combustion after ignition and by use of simplified emission models, the correlations have been found useful for predicting trends in engine-out emission with low computational cost.
Technical Paper

Turbocharger Speed Estimation via Vibration Analysis

2016-04-05
2016-01-0632
Due to demanding legislation on exhaust emissions for internal combustion engines and increasing fuel prices, automotive manufacturers have focused their efforts on optimizing turbocharging systems. Turbocharger system control optimization is difficult: Unsteady flow conditions combined with not very accurate compressor maps make the real time turbocharger rotational speed one of the most important quantities in the optimization process. This work presents a methodology designed to obtain the turbocharger rotational speed via vibration analysis. Standard knock sensors have been employed in order to achieve a robust and accurate, yet still a low-cost solution capable of being mounted on-board. Results show that the developed method gives an estimation of the turbocharger rotational speed, with errors and accuracy acceptable for the proposed application. The method has been evaluated on a heavy duty diesel engine.
Technical Paper

Transient Emission Predictions With Quasi Stationary Models

2005-10-24
2005-01-3852
Heavy trucks contribute significantly to the overall air pollution, especially NOx and PM emissions. Models to predict the emissions from heavy trucks in real world on road conditions are therefore of great interest. Most such models are based on data achieved from stationary measurements, i.e. engine maps. This type of “quasi stationary” models could also be of interest in other applications where emission models of low complexity are desired, such as engine control and simulation and control of exhaust aftertreatment systems. In this paper, results from quasi stationary calculations of fuel consumption, CO, HC, NOx and PM emissions are compared with time resolved measurements of the corresponding quantities. Measurement data from three Euro 3-class engines is used. The differences are discussed in terms of the conditions during transients and correction models for quasi stationary calculations are presented. Simply using engine maps without transient correction is not sufficient.
Technical Paper

Torque Estimation Based Virtual Crank Angle Sensor

2016-04-05
2016-01-1073
In engine management systems many calculations and actuator actions are performed in the crank angle domain. Most of these actions and calculations benefit from an improved accuracy of the crank angle measurement. Improved estimation of crank angle, based on pulse signals from an induction sensor placed on the flywheel of a heavy duty CI engine is thus of great importance. To estimate the crank angle the torque balance on the crankshaft is used. This torque balance is based on Newton’s second law. The net torque gives the flywheel acceleration which in turn gives engine speed and crank angle position. The described approach was studied for two crankshaft models: A rigid crankshaft approach and a lumped mass approach, the latter having the benefit of being able to capture the torsional effects of the crankshaft twisting and bending due to torques acting on it. These methods were then compared to a linear extrapolation of the engine speed, a common method to estimate crank angle today.
Technical Paper

The 6-Inlet Single Stage Axial Turbine Concept for Pulse-Turbocharging: A Numerical Investigation

2019-04-02
2019-01-0323
The demand for high-efficiency engines has never been greater as energy consumption and emission reductions are key ingredients for continued competitiveness in today’s transportation industry. A main contributor to recent and future improvement of the internal combustion engine is the gas exchange process. By utilizing the exhaust energy in the turbine stage of an exhaust turbocharger, the pumping work can be improved resulting in significant gains of engine system efficiency. Two main aspects can be identified with regards to the turbine design that are crucial: The level of exhaust pulse separation and turbine efficiency at high pressure ratios. For a pulse-turbocharged engine both aspects need to be considered in order to gain full benefit of the exhaust energy utilization process. In this study, a novel axial turbine stage concept with divided inlets is presented.
Technical Paper

Swirl and Injection Pressure Impact on After-Oxidation in Diesel Combustion, Examined with Simultaneous Combustion Image Velocimetry and Two Colour Optical Method

2013-04-08
2013-01-0913
After-oxidation in Heavy Duty (HD) diesel combustion is of paramount importance for emissions out from the engine. During diffusion diesel combustion, lots of particulate matter (PM) is created. Most of the PM are combusted during the after-oxidation part of the combustion. Still some of the PM is not, especially during an engine transient at low lambda. To enhance the PM oxidation in the late engine cycle, swirl together with high injection pressure can be implemented to increase in-cylinder turbulence at different stages in the cycle. Historically swirl is known to reduce soot particulates. It has also been shown, that with today's high injection pressures, can be combined with swirl to reduce PM at an, for example, engine transient. The mechanism why the PM engine out is reduced also at high injection pressures is however not so well understood.
Technical Paper

Swirl and Injection Pressure Effect on Post-Oxidation Flow Pattern Evaluated with Combustion Image Velocimetry, CIV, and CFD Simulation

2013-10-14
2013-01-2577
In-cylinder flow pattern has been examined experimentally in a heavy duty optical diesel engine and simulated with CFD code during the combustion and the post-oxidation phase. Mean swirling velocity field and its evolution were extracted from optical tests with combustion image velocimetry (CIV). It is known that the post-oxidation period has great impact on the soot emissions. Lately it has been shown in swirling combustion systems with high injection pressures, that the remaining swirling vortex in the post-oxidation phase deviates strongly from solid body rotation. Solid body rotation can only be assumed to be the case before fuel injection. In the studied cases the tangential velocity is higher in the centre of the piston bowl compared to the outer region of the bowl. The used CIV method is closely related to the PIV technique, but makes it possible to extract flow pattern during combustion at full load in an optical diesel engine.
Technical Paper

Surge Detection Using Knock Sensors in a Heavy Duty Diesel Engine

2017-09-04
2017-24-0050
Improving turbocharger performance to increase engine efficiency has the potential to help meet current and upcoming exhaust legislation. One limiting factor is compressor surge, an air flow instability phenomenon capable of causing severe vibration and noise. To avoid surge, the turbocharger is operated with a safety margin (surge margin) which, as well as avoiding surge in steady state operation, unfortunately also lowers engine performance. This paper investigates the possibility of detecting compressor surge with a conventional engine knock sensor. It further recommends a surge detection algorithm based on their signals during transient engine operation. Three knock sensors were mounted on the turbocharger and placed along the axes of three dimensions of movement. The engine was operated in load steps starting from steady state. The steady state points of operation covered the vital parts of the engine speed and load range.
Technical Paper

Study on Heat Losses during Flame Impingement in a Diesel Engine Using Phosphor Thermometry Surface Temperature Measurements

2019-04-02
2019-01-0556
In-cylinder heat losses in diesel engines decrease engine efficiency significantly and account for approximately 14-19% [1, 2, 3] of the injected fuel energy. A great part of the heat losses during diesel combustion presumably arises from the flame impingement onto the piston. Therefore, the present study investigates the heat losses during flame impingement onto the piston bowl wall experimentally. The measurements were performed on a full metal heavy-duty diesel engine with a small optical access through a removed exhaust valve. The surface temperature at the impingement point of the flame was determined by evaluating a phosphor’s temperature dependent emission decay. Simultaneous cylinder pressure measurements and high-speed videos are associated to the surface temperature measurements in each cycle. Thus, surface temperature readings could be linked to specific impingement and combustion events.
Technical Paper

Study of a Heavy Duty Euro5 EGR-Engine Sensitivity to Fuel Change with Emphasis on Combustion and Emission Formation

2010-04-12
2010-01-0872
A diesel engine developed for an international market must be able to run on different fuels considering the diesel fuel qualities and the increasing selection of biofuels in the world. This leads to the question of how different fuels perform relative to a standard diesel fuel when not changing the hardware settings. In this study five fuels (Japanese diesel, MK3, EN590 with 10% RME, EN590 with 30% RME and pure RME) have been compared to a reference diesel fuel (Swedish MK1) when run on three different speeds and three different loads at each speed. The experiments are run on a Scania 13l Euro5 engine with standard settings for Swedish MK1 diesel. In general the differences were not large between the fuels. NO x usually increased compared to MK1 and then soot decreased as would be expected. The combustion efficiency increased with increased RME contents of the fuel but the indicated efficiency was not influenced by RME except for at higher loads.
Journal Article

Sensitivity Analysis Study on Ethanol Partially Premixed Combustion

2013-04-08
2013-01-0269
Partially Premixed Combustion (PPC) is a combustion concept which aims to provide combustion with low smoke and NOx with high thermal efficiency. Extending the ignition delay to enhance the premixing, avoiding spray-driven combustion and controlling the combustion temperature at an optimum level through use of suitable lambda and EGR levels have been recognized as key factors to achieve such a combustion. Fuels with high ignitability resistance have been proven to be a useful to extend the ignition delay. In this work pure ethanol has been used as a PPC fuel. The objective of this research was initially to investigate the required operating conditions for PPC with ethanol. Additionally, a sensitivity analysis was performed to understand how the required parameters for ethanol PPC such as lambda, EGR rate, injection pressure and inlet temperature influence the combustion in terms of controllability, stability, emissions (i.e.
Technical Paper

Radiocarbon and Hydrocarbon Analysis of PM Sources During WHTC Tests on a Biodiesel-Fueled Engine

2014-04-01
2014-01-1243
PM in diesel exhaust has been given much attention due to its adverse effect on both climate and health. As the PM emission levels are tightened, the portion of particles originating from the lubrication oil is likely to increase. In this study, exhausts from a biodiesel-fueled Euro 5 engine were examined to determine how much of the carbonaceous particles that originated from the fuel and the lubrication oil, respectively. A combination of three methods was used to determine the PM origin: chain length analysis of the hydrocarbons, determination of organic and elemental carbon (OC and EC), and the concentration of 14C found in the exhausts. It was found that the standard method for measuring hydrocarbons in PM on a filter (chain length analysis) only accounted for 63 % of the OC, meaning that it did not account for all non-soot carbon in the exhausts.
Journal Article

Preparation and Characterization of a Stable Test Fuel Comparable to Aged Biodiesel for Use in Accelerated Corrosion Studies

2014-10-13
2014-01-2772
Biodiesel is chemically unstable and sensitive to oxidation. Aging of biodiesel results in the formation of degradation products, such as short chain fatty acids (SCFA) and water. These products may cause corrosion of metals in fuel systems. When performing corrosion tests, biodiesel continuously degrades during the test, resulting in an uncontrolled test system. In order to obtain a stable corrosion testing system, a test fuel was developed using a saturated FAME (methyl myristate), which was doped with RME degradation products at levels typically seen in field tests. The test fuel was compared to RME with regards to structure, SCFA and water content before and after aging tests. In addition, an accelerated corrosion study of copper was performed in both the test fuel and in RME. The copper specimens were analyzed before and after test using light optical microscope and weight measurements. The Cu content in the test fuel and RME was also analyzed.
Technical Paper

Particle Emission Measurements in a SI CNG Engine Using Oils with Controlled Ash Content

2019-01-15
2019-01-0053
Clean combustion is one of the inherent benefits of using a high methane content fuel, natural gas or biogas. A single carbon atom in the fuel molecule results, to a large extent, in particle-free combustion. This is due to the high energy required for binding multiple carbon atoms together during the combustion process, required to form soot particles. When scaling up this process and applying it in the internal combustion engine, the resulting emissions from the engine have not been observed to be as particle free as the theory on methane combustion indicates. These particles stem from the combustion of engine oil and its ash content. One common practice has been to lower the ash content to regulate the particulate emissions, as was done for diesel engines. For a gas engine, this approach has been difficult to apply, as the piston and valvetrain lubrication becomes insufficient.
Technical Paper

Optical Studies in a DI Diesel Engine

1999-10-25
1999-01-3650
Fuel injection and combustion was studied with direct photography in a single cylinder DI diesel engine. Optical access was accomplished by using an endoscope-based measurement system. In the optical measurements the influence of several parameters were studied: start of injection, inlet air temperature and pressure, injected fuel amount (constant air mass), load level (varying air and fuel mass) and nozzle hole diameter. Liquid fuel spray penetration, flame lift-off and flame length were measured. The maximum spray penetration was 23 - 25 mm. As diffusion combustion started, the spray length decreased to about 15 mm. The flame lift-off was located 4 - 6 mm behind the liquid fuel spray tip. Using the two-color method the spatial temperature distribution in flames was calculated.
Technical Paper

Model Predictive Control of a Combined EGR/SCR HD Diesel Engine

2010-04-12
2010-01-1175
Achieving upcoming HD emissions legislation, Euro VI/EPA 10, is a challenge for all engine manufacturers. A likely solution to meet the NOx limit is to use a combination of EGR and SCR. Combining these two technologies poses new challenges and possibilities when it comes to optimization and calibration. Using a complete system approach, i.e., considering the engine and the aftertreatment system as a single unit, is important in order to achieve good performance. Optimizing the complete system is a tedious task; first there are a large number of variables which affect both emissions and fuel consumption (injection timing, EGR rate, urea dosing, injection pressure, pilot/post injections, for example). Secondly, the chemical reactions in the SCR catalyst are substantially slower than the dynamics of the diesel engine and the rest of the system, making the optimization problem time dependent.
Technical Paper

Knock Sensor Based Virtual Cylinder Pressure Sensor

2019-01-15
2019-01-0040
Typically the combustion in a direct injected compression ignited internal combustion engine is open-loop controlled. The introduction of a cylinder pressure sensor opens up the possibility of a virtual combustion sensor which could enable closed-loop combustion control and thus the potential to counteract effects such as engine part to part variation, component ageing and fuel quality diversity. Closed-loop combustion control requires precise, robust and preferably cheap sensors. This paper presents a virtual cylinder pressure sensor based on the signal from the inexpensive but well proven knock sensor. The method used to convert the knock sensor signal into a pressure estimate included the stages: Phase correcting the raw signal, Filtering the raw signal, Scaling the signal to known thermodynamic laws and provided engine sensors signals and Reconstructing parts of the signal with other known models and assumptions.
Technical Paper

Knock Sensor Based Virtual Combustion Sensor Signal Bias Sensitivity

2018-04-03
2018-01-1154
The combustion in a direct injected internal combustion engine is normally open-loop controlled. The introduction of cylinder pressure sensors enables a virtual combustion sensor which in turn enables closed-loop combustion control, and the possibility to counteract effects such as engine part-to-part variation, component ageing and fuel quality diversity. Closed-loop combustion control requires precise, robust and preferably cheap sensors. This paper presents an investigation of the robustness and the limitation of a knock sensor based virtual combustion sensor. This virtual combustion sensor utilize the common heat release analysis using a knock sensor based virtual cylinder pressure signal. Major virtual sensor error sources in a heavy-duty engine were identified as: the specific heat ratio model, the boost pressure and the crank angle phasing. The virtual sensor errors were quantified in relation to both the measured cylinder pressure and the total virtual sensor error.
Technical Paper

Investigations of the Interactions between Lubricant-derived Species and Aftertreatment Systems on a State-of-the-Art Heavy Duty Diesel Engine

2003-05-19
2003-01-1963
The tightening legislation in the on-road heavy-duty diesel area means that pollution control systems will soon be widely introduced on such engines. A number of different aftertreatment systems are currently being considered to meet the incoming legislation, including Diesel Particulate Filters (DPF), Diesel Oxidation Catalysts (DOC) and Selective Catalytic Reduction (SCR) systems. Relatively little is known about the interactions between lubricant-derived species and such aftertreatment systems. This paper describes the results of an experimental program carried out to investigate these interactions within DPF, DOC and SCR systems on a state-of-the-art 9 litre engine. The influence of lubricant composition and lube oil ash level was investigated on the different catalyst systems. In order to reduce costs and to speed up testing, test oil was dosed into the fuel. Tests without dosing lubricant into the fuel were also run.
X