Refine Your Search

Topic

Search Results

Technical Paper

Tumble Vortex Characterization by Complex Moments

2018-04-03
2018-01-0207
Rotating flow inside an internal combustion engine cylinder is deliberately engineered for improved fuel-air mixing and combustion. The details of the rotating flow structure vary temporally over an engine cycle as well as cyclically at the same engine phase. Algorithms in the literature to identify these structural details of the rotating flow invariably focus on locating its center and, on occasion, measuring its rotational strength and spatial extent. In this paper, these flow structure parameters are evaluated by means of complex moments, which have been adapted from image (scalar field) recognition applications to two-dimensional flow pattern (vector field) analysis. Several additional detailed characteristics of the rotating flow pattern - the type and extent of its deviation from the ideal circular pattern, its rotational and reflectional symmetry (if exists), and thus its orientation - are also shown to be related to the first few low-order complex moments of the flow pattern.
Technical Paper

Theoretical Study on Similarity of Diesel Combustion

2018-04-03
2018-01-0235
Based on the similarity theory and conservation equations, some of the important dimensionless numbers in diesel combustion are deduced and discussed. Existence of similarity is theoretically proved in diffusion (or mixing-controlled) combustion and premixed combustion as well as in spray mixture formation processes in different size diesel engines. With the prerequisite of geometric similarity, scaling rules for some parameters including engine speed, injection pressure and injection duration are established to realize the similarity between large-bore and small-bore diesel engines. To verify the similarity theories, the computational fluid dynamics (CFD) simulation are conducted, and three scaling rules, which keep the engine speed, injection pressure and lift-off length constant, respectively, are compared under the conditions of the light load (0.3 MPa IMEP) and high load (1.55 MPa IMEP) operations.
Technical Paper

The Nozzle Flows and Atomization Characteristics of the Two-Component Surrogate Fuel of Diesel from Indirect Coal Liquefaction at Engine Conditions

2018-09-10
2018-01-1691
Recently, all world countries facing the stringent emission regulations have been encouraged to explore the clean fuel. The diesel from indirect coal liquefaction (DICL) has been verified that can reduce the soot and NOx emissions of compression-ignition engine. However, the atomization characteristics of DICL are rarely studied. The aim of this work is to numerically analyze the inner nozzle flow and the atomization characteristics of the DICL and compare the global and local flow characteristics of the DICL with the NO.2 diesel (D2) at engine conditions. A surrogate fuel of the DICL (a mixture of 72.4% n-dodecane and 27.6% methylcyclohexane by mass) was built according to its components to simulate the atomization characteristics of the DICL under the high-temperature and high-pressure environment (non-reacting) by the Large Eddy Simulation (LES).
Technical Paper

Suitability Study of n-Butanol for Enabling PCCI and HCCI and RCCI Combustion on a High Compression-ratio Diesel Engine

2015-09-01
2015-01-1816
This work investigates the suitability of n-butanol for enabling PCCI, HCCI, and RCCI combustion modes to achieve clean and efficient combustion on a high compression ratio (18.2:1) diesel engine. Systematic engine tests are conducted at low and medium engine loads (6∼8 bar IMEP) and at a medium engine speed of 1500 rpm. Test results indicate that n-butanol is more suitable than diesel to enable PCCI and HCCI combustion with the same engine hardware. However, the combustion phasing control for n-butanol is demanding due to the high combustion sensitivity to variations in engine operating conditions where engine safety concerns (e.g. excessive pressure rise rates) potentially arise. While EGR is the primary measure to control the combustion phasing of n-butanol HCCI, the timing control of n-butanol direct injection in PCCI provides an additional leverage to properly phase the n-butanol combustion.
Technical Paper

Study on the Optimal Control Strategy of Transient Process for Diesel Engine with Sequential Turbocharging System

2016-10-17
2016-01-2157
Three-phase sequential turbocharging system with two unequal-size turbochargers is developed to improve fuel economy performance and reduce emission of the automotive diesel engine, which satisfies wide range of intake flow demand. However, it results in complicated transient control strategies under frequently changing operating conditions. The present work aims to optimize the control scheme of boost system and fuel injection and evaluate their contributions to the improvement of transient performance. A mean value model for diesel engine was built up in SIMULINK environment and verified by experiment for transient study. Then a mathematical model of optimization issue was established. Strategies of control valves and fuel injection for typical acceleration and loading processes are obtained by coupled calculating of the simulation model and optimization algorithm.
Technical Paper

Study of Flash Boiling Spray Combustion in a Spark Ignition Direct Injection Optical Engine Using Digital Image Processing Diagnostics

2019-04-02
2019-01-0252
Flash boiling spray has been proven to be a useful method in providing finer fuel droplet and stronger evaporation in favor of creating a homogeneous fuel-air mixture. Combustion characteristics of flash boiling spray are thus valuable to be investigated systematically for aiding the development of efficient internal combustion system. An experimental study of flash boiling spray combustion in a SIDI optical engine under early injection has been conducted. The fuel, Iso-octane, was used across all tests. Three fuel spray conditions experimented in the study: normal liquid, transitional flash boiling and flare flash boiling sprays, within each case that Pa/Ps ratio was set in (>1), (0.3~1), and (<0.3) respectively. A small quartz insert on the piston enables optical access for observing combustion process; non-intrusive measurements on flame radicals has been carried out using a high-speed color camera.
Technical Paper

Simultaneous Measurement of the Flame Lift-Off Length on Direct Injection Diesel Sprays Using High Speed Schlieren Imaging and OH Chemiluminescence

2017-10-08
2017-01-2307
Lift-off length is defined as the distance from injector hole to the location where flame stabilized on a high injection pressure direct injection (DI) diesel spray. In this paper we used the high-speed (40 kHz) Schlieren and time-averaged OH chemiluminescence imaging technique to simultaneously measure the flame lift-off locations on a DI diesel spray in an optically accessible and constant-volume combustion vessel. The time-resolved development of the diesel spray acquired from the high-speed Schlieren imaging system enabled us to observe the instantaneous spray structure details of the spray flames. The OH chemiluminescence image obtained from a gated, intensified CCD video camera with different delay and width settings was used to determine the quiescent lift-off length. Experiments were conducted under various ambient temperatures, ambient gas densities, injection pressures and oxygen concentrations.
Technical Paper

One Better Model of Vehicle Turbocharged Diesel Engine than VNT Turbo

2014-04-01
2014-01-1644
In the internal combustion engine, about 25%-40% of the energy released by burned fuel is taken away by the exhaust gas. The part of the usable energy in the exhaust can be used in the turbocharged engine. So, at present, turbocharged diesel engine hasn't made full use of exhaust gas energy. The authors propose a model of the 4-stroke turbocharged diesel engine of split exhausting system. Adding a rapidly on-and-off exhaust control valve between exhaust passage and manifold in the 4-stroke turbocharged diesel engine can improve the utilization rate of the usable energy in the exhaust. By utilizing the mean effective pressure (MEP), this paper is to calculate the maximum usable energy, the energy provided by exhaust and the energy required by intake. The results gets that the new type of exhausting system can help engine to increase usage rate of the exhaust gas energy to around 20% at the rated condition compared to the existing vehicle diesel engines with VNT.
Technical Paper

Measurement of Temperature and Soot (KL) Distributions in Spray Flames of Diesel-Butanol Blends by Two-Color Method Using High-Speed RGB Video Camera

2016-10-17
2016-01-2190
Taking advantages of high speed RGB video cameras, the two-color method can be implemented with a relatively simple setup to obtain the temporal development of the two dimensional temperature and soot (KL) distributions in a reacting diesel jet. However, several issues such as the selection of the two wavelengths, the role of bandpass filters, and the proper optical settings, etc. should be known to obtain a reliable measurement. This paper, at first, discusses about the uncertainties in the measurement of temperature and KL distributions in the diesel flame by the two-color method using the high speed RGB video camera. Since n-butanol, as an alternative renewable fuel, has the potential application in diesel engines, the characteristic of spray combustion of diesel-butanol blends under the diesel-like ambient conditions in a pre-burning constant-volume combustion chamber is studied.
Technical Paper

Life Cycle Land Requirement, Energy Consumption and GHG Emissions of Biodiesel Derived from Microalgae and Jatropha curcas Seeds in China

2014-04-01
2014-01-1964
The aim of this study is to evaluate the land requirement, energy consumption and GHG (greenhouse gases) emissions of microalgal biodiesel (M-BD) and Jatropha curcas seeds (J-BD) based biodiesel from the perspective of life cycle assessment (LCA). Mass and energy balance was used through the whole LCA calculation for each process. Two types of biodiesel (100% biodiesel: BD100, and 20% blends of biodiesel: BD20) were assumed to be combusted in the suitable diesel engine. Displacement method was adopted to measure the co-products credits. The results showed that the land requirement of producing 1 kg biodiesel from microalgae was about 1/31 of that from Jatropha curcas seeds. The well to pump (WTP) stage for microalgal biodiesel had higher fossil energy requirement but lower petroleum energy consumption and GHG emissions compared to Jatropha curcas and conventional diesel (CD). The WTP energy efficiency for J-BD100 and M-BD 100 were 26% and 17.4%, respectively.
Journal Article

In-Flame Soot Sampling and Morphology Analysis in an Optical Spark-Ignition Direct-Injection (SIDI) Engine

2018-04-03
2018-01-1418
Stringent particulate emission regulations are applied to spark-ignition direct-injection (SIDI) engines, calling for a significant in-cylinder reduction of soot particles. To enhance fundamental knowledge of the soot formation and oxidation process inside the cylinder of the engine, a new in-flame particle sampling system has been developed and implemented in a working optical SIDI engine with a side-mounted, wall-guided injection system. Using the sampling probes installed on the piston top, the soot particles are directly sampled from the petrol flame for detailed analysis of particle size distribution, structure, and shape. At the probe tip, a transmission electron microscope (TEM) grid is stored for the soot collection via thermophoresis, which is imaged and post-processed for statistical analysis. Simultaneously, the flame development was recorded using two high-speed cameras to evidence the direct exposure of the sampling grids to the soot-laden diffusion flames and pool fires.
Technical Paper

Homogeneous Charge Preparation of Diesel Fuel by Spray Impingement onto a Hot Surface at Intake Manifold

2006-10-16
2006-01-3322
A segment of steel tube with the inner diameter of 60 mm and length of 100 mm was fixed between the intake manifold and cylinder head in a direct injection natural aspirated diesel engine. The surface of the tube could be heated to be above 400 °C by the heater enwrapped outside within several minutes under the power less than 600 W. The tip of an injector traditionally used for in-cylinder diesel direct injection was extended to the axis of the tube. The diesel sprays could impinge onto the hot inner surface of the tube and atomize quickly if the temperature of the tube was high enough. Then the fuel-air mixture would be sucked into the cylinder, and HCCI combustion could be fulfilled. The vaporization ratio of the impinged diesel sprays was estimated by fuel consumption, intake air flux and excess air coefficient (λ) calculated from the volumetric concentration of O2, CO2 and CO emissions. The NOx emission was always very low.
Technical Paper

Effect of Injection Pressure on Nozzle Internal Flow and Jet Breakup under Sub-Cooled and Flash Boiling Test Conditions

2019-04-02
2019-01-0286
Injection pressure plays a vital role in spray break-up and atomization. High spray injection pressure is usually adopted to optimize the spray atomization in gasoline direct injection fuel system. However, higher injection pressure also leads to engine emission problem related to wall wetting. To solve this problem, researchers are trying to use flash boiling method to control the spray atomization process under lower injection test conditions. However, the effect of injection pressure on the spray atomization under flash boiling test condition has not been adequately investigated yet. In this study, quantitative study of internal flow and near nozzle spray breakup were carried out based on a two-dimensional transparent nozzle via microscopic imaging and phase Doppler interferometery. N-hexane was chosen as test fluid with different injection pressure conditions. Fuel temperature varied from 112°C to 148°C, which covered a wide range of superheated conditions.
Technical Paper

Early Pilot Injection Strategies for Reactivity Control in Diesel-ethanol Dual Fuel Combustion

2018-04-03
2018-01-0265
This paper examines the diesel-ethanol dual fuel combustion at medium engine loads on a single-cylinder research diesel engine with a compression ratio of 16.5:1. The effect of exhaust gas recirculation (EGR) and ethanol energy ratio was investigated for the dual fuel combustion to achieve simultaneously ultra-low NOx and soot emissions. A medium ethanol ratio of about 0.6 was found suitable to meet the requirements for mixing enhancement and ignition control, which resulted in the lowest NOx and soot emissions among the tested ethanol ratios. A double-pilot injection strategy was found competent to lower the pressure rise rate owing to the reduced fuel quantity in the close-to-TDC injection. The advancement of pilot injection timing tended to reduce the CO and THC emissions, which is deemed beneficial for high EGR operations. The reactivity mutual-modulation between the diesel pilot and the background ethanol mixture was identified.
Technical Paper

Distortion Mapping Correction of In-Cylinder Flow Field Measurements through Optical Liner Using Gaussian Optics Model

2017-03-28
2017-01-0615
Combustion efficiency of internal combustion engine is closely influenced by the air flow pattern in the engine cylinder. Some researchers use high-speed particle image velocimetry to visualize and measure the temporally and spatially resolved in-cylinder velocity flow fields in the optically assessable engine. However, the transparent cylindrical liner makes it difficult to accurately determine the particle displacements inside the cylinder due to the optically distorted path of scattering light from seeding particles through the curved liner. To correct for the distortion-induced error in the seeding particle positions through the optical liner, the distortion mapping function is modeled using the Gaussian optics theory. Two artificial flow patterns with 5 by 5 vectors were made to illustrate the mapping correction. Distortion-induced error of velocity vectors was precisely mapped in six different planes inside the cylinder.
Technical Paper

Diesel Spray Characterization at Ultra-High Injection Pressure of DENSO 250 MPa Common Rail Fuel Injection System

2017-03-28
2017-01-0821
High fuel injection pressure has been regarded as a key controlling factor for internal combustion engines to achieve good combustion performance with reduced emissions and improved fuel efficiency. For common-rail injection system (CRS) used in advanced diesel engines, fuel injection pressure can often be raised to beyond 200 MPa. Although characteristics of diesel spray has been thoroughly studied, little work has been done at ultra-high injection pressures. In this work, the characteristics of CRS diesel spray under ultra-high injection pressure up to 250 MPa was investigated. The experiments were conducted in an optically accessible high-pressure and high-temperature constant volume chamber. The injection pressure varied from 50 MPa to up to 250 MPa. Both non-evaporating condition and evaporating condition were studied. A single-hole injector was specially designed for this investigation.
Technical Paper

Development and Validation of a Binary Surrogate Model for Biodiesel

2017-10-08
2017-01-2326
In the present study a novel surrogate model for biodiesel including methyl decanoate (MD) and methyl crotonate (MC) was proposed and validated. In the binary mixture of surrogate fuel, MD was chosen to represent saturated methyl esters, which exhibited great low-temperature reactivity with typical negative temperature-coefficient (NTC) behavior and MC represented unsaturated components in real biodiesel, which was mainly responsible for soot formation and evolution. The proportion of MD and MC was determined by matching the characteristics such as derived cetane number (DCN), molecular weight (MW), atom number, H/C ratio and unsaturated degree. All of the criterions were calculated by the least square principles and the calculated surrogate of biodiesel was comprised of 92% MD and 8% MC in mole fraction. Furthermore, detailed kinetic model of the surrogate fuel was constructed and developed with modifications, which was composed of 2918 species and 9164 reactions.
Technical Paper

Contrary Effects of Nozzle Length on Spray Primary Breakup under Subcooled and Superheated Conditions

2018-04-03
2018-01-0302
Nozzle length has been proven influencing fuel spray characteristics, and subsequently fuel-air mixing and combustion processes. However, almost all existing related studies are conducted when fuel is subcooled, of which fuel evaporation is extremely weak, especially at the near nozzle region. In addition, injector tip can be heated to very high temperature in SIDI engines, which would trigger flash boiling fuel spray. Therefore, in this study, effect of nozzle length on spray characteristics is investigated under superheated conditions. Three single-hole injectors with different nozzle length were studied. High speed backlit imaging technique was applied to acquire magnified near nozzle spray images based on an optical accessible constant volume chamber. Fuel pressure was maintained at 15 MPa, and n-hexane was chosen as test fuel.
Technical Paper

Analysis of the Cycle-to-Cycle Variations of In-Cylinder Vortex Structure and Vorticity using Phase-Invariant Proper Orthogonal Decomposition

2015-09-01
2015-01-1904
The proper formation of fuel-air mixture, which depends to a large extend on the complex in-cylinder air flow, is an important criterion to control the clean and reliable combustion process in spark-ignition direct-injection (SIDI) engines. The in-cylinder flow vorticity field presents highly transient complex characteristics, and the corresponding vorticity field also evolves in the entire engine cycle from intake to exhaust strokes. It is also widely recognized that the vorticity field plays a key role in the in-cylinder turbulent field because it influences the air-fuel mixing and flame development process. In this investigation, the in-cylinder vortex structure and vorticity field characteristics are analyzed using the phase-invariant proper orthogonal decomposition (POD) method.
Technical Paper

An Experimental Study of the Effects of Coolant Temperature on Particle Emissions from a Dual Injection Gasoline Engine

2019-01-15
2019-01-0051
Euro VI emission standards have set a very strict limitation on particulate matter emissions of Gasoline Direct Injection (GDI) engine. It is difficult for GDI engine to meet the Euro VI PN regulation (6×1011#/km) without a series of complicated after-treatment devices such as Gasoline Particulate Filter (GPF). Previous research shows that GDI vehicles under cold start condition account for more than 50% of both particle number and mass emissions during the entire NEDC driving cycle. Dual Injection Gasoline engine is based on the GDI engine by adding a set of port fuel injection system. The good mixing characteristics of the port fuel injection system can help to reduce the particulate matter emissions of the GDI engine during the cold start condition.
X