Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Well-to-Wheel Energy Use and Greenhouse Gas Emissions for Various Vehicle Technologies

2001-03-05
2001-01-1343
The well-to-wheel greenhouse gas (GHG) emissions and energy use of selected alternative vehicles are compared to those of a conventional gasoline vehicle. The vehicle technologies investigated are internal combustion engine, hybrid and fuel cell technology. The fuels are assumed to be produced from either crude oil or natural gas. Wherever possible real data has been used. The study shows that hybrid vehicles emit a similar amount of greenhouse gas as fuel cell vehicles. The diesel hybrid uses the least primary energy. The least greenhouse gas emissions are produced by natural gas and hydrogen hybrid and fuel cell vehicles.
Journal Article

Understanding the Octane Appetite of Modern Vehicles

2016-04-05
2016-01-0834
Octane appetite of modern engines has changed as engine designs have evolved to meet performance, emissions, fuel economy and other demands. The octane appetite of seven modern vehicles was studied in accordance with the octane index equation OI=RON-KS, where K is an operating condition specific constant and S is the fuel sensitivity (RONMON). Engines with a displacement of 2.0L and below and different combinations of boosting, fuel injection, and compression ratios were tested using a decorrelated RONMON matrix of eight fuels. Power and acceleration performance were used to determine the K values for corresponding operating points. Previous studies have shown that vehicles manufactured up to 20 years ago mostly exhibited negative K values and the fuels with higher RON and higher sensitivity tended to perform better.
Technical Paper

The Volumetric Efficiency of Direct and Port Injection Gasoline Engines with Different Fuels

2002-03-04
2002-01-0839
A study has been undertaken with a single-cylinder engine, based on the Mitsubishi GDi combustion system, that has the option of either port injection or direct injection. Tests have been undertaken with pure fuel components (methane, iso-octane, toluene and methanol), and a representative gasoline that has also been tested with the addition of 10% methanol and 10% ethanol. The volumetric efficiency depends both on the fuel and its time and place of injection. For stoichiometric operation with unleaded gasoline, changing from port injection to direct injection led to a 9% increase in volumetric efficiency, which was improved by a further 3% when 10% methanol was blended with the gasoline. The improvements in volumetric efficiency will be used to quantify the extent of charge cooling by fuel evaporation, and these will be compared with predictions assuming the maximum possible level of fuel evaporation.
Technical Paper

The Response of a Closed Loop Controlled Diesel Engine on Fuel Variation

2008-10-06
2008-01-2471
An investigation was conducted to elucidate, how the latest turbocharged, direct injection Volkswagen diesel engine generation with cylinder pressure based closed loop control, to be launched in the US in 2008, reacts to fuel variability. A de-correlated fuels matrix was designed to bracket the range of US market fuel properties, which allowed a clear correlation of individual fuel properties with engine response. The test program consisting of steady state operating points showed that cylinder pressure based closed loop control successfully levels out the influence of fuel ignition quality, showing the effectiveness of this new technology for markets with a wide range of fuel qualities. However, it also showed that within the cetane range tested (39 to 55), despite the constant combustion mid-point, cetane number still has an influence on particulate and gaseous emissions. Volatility and energy density also influence the engine's behavior, but less strongly.
Technical Paper

The Molecular Basis of the Rheological Behaviour of Lubricants

1999-10-25
1999-01-3611
The design of effective traction fluids and lubricants is facilitated by an understanding of how molecular structure within a fluid affects the behaviour of that fluid in-situ. Non-equilibrium molecular dynamics simulation has been used to analyse how molecules of different structures behave in a fluid and to determine the influence of these separate behaviours on the different rheological properties of the fluids.
Technical Paper

The Effects of Driveability on Emissions in European Gasoline Vehicles

2000-06-19
2000-01-1884
Fuel volatility and vehicle characteristics have long been recognised as important parameters influencing the exhaust emissions and the driveability of gasoline vehicles. Limits on volatility are specified in a number of world-wide / national fuel specifications and, in addition, many Oil Companies monitor driveability performance to ensure customer satisfaction. However, the relationship between driveability and exhaust emissions is relatively little explored. A study was carried out to simultaneously measure driveability and exhaust emissions in a fleet of 10 European gasoline vehicles. The vehicles were all equipped with three-way catalysts and single or multi-point fuel injection. The test procedure and driving cycle used were based on the European Cold Weather Driveability test method.
Technical Paper

Simulating PM Emissions and Combustion Stability in Gasoline/Diesel Fuelled Engines

2011-04-12
2011-01-1184
Regulations on emissions from diesel and gasoline fuelled engines are becoming more stringent in all parts of the world. Hence there is a great deal of interest in developing advanced combustion systems that offer the efficiency of a diesel engine, but with low PM and NOx. One promising approach is that of Partially-Premixed Compression Ignition (PPCI) or Low Temperature Combustion (LTC). Using this approach, PM can be reduced in compression ignition engines by promoting the mixing of fuel and air prior to combustion. This paper describes the application of an advanced combustion simulator for fuels, combustion and emissions to analyze the key processes which occur in PPCI combustion mode. A detailed chemical kinetic model with advanced PM population balance sub-model is employed in a PPCI engine context to examine the impact of ignition resistance on combustion, mixing, ignition and emissions.
Technical Paper

Safety Considerations in Retailing Hydrogen

2002-06-03
2002-01-1928
To be used in public, untrained people must be able to handle hydrogen with the same degree of confidence and with no more risk than conventional liquid and gaseous fuels. Physical properties relevant to the safety of hydrogen as a fuel are reviewed and compared to gasoline, LPG and methane. The key parameters are flammability, detonability, ignition energy, materials compatibility, buoyancy and toxicity. For many years, Shell has conducted an experimental programme on gas safety, which has recently been extended to include hydrogen. A selection of results from this programme is presented.
Technical Paper

Relevance of Research and Motor Octane Numbers to the Prediction of Engine Autoignition

2004-06-08
2004-01-1970
Links between the RON, MON and Octane Index (OI) of a gasoline are explored and factors influencing knock severity are discussed. The OI was calculated by considering how the autoignition delay time changes with temperature and pressure. Three fuels were examined: a 65/35% toluene/heptane test fuel, and two primary reference fuels (PRF), one with the RON value of the test fuel and the other with the MON value. PRF autoignition times were taken from Adomeit et al and test fuel autoignition times were generated from mathematical models of RON/MON tests plus two experimental sets of engine autoignition data. The toluene/heptane OI depended strongly on engine conditions and could easily exceed the RON. With a lean mixture at high pressure it was 100.2 whereas the RON was only 83.9. Knock severity is governed by the nature of localized “hot spots”. Severe knock is associated with developing detonations towards the end of the delay time.
Technical Paper

Quantifying the Rheological Basis of Traction Fluid Performance

1999-10-25
1999-01-3610
This paper proposes a new approach to quantifying the rheological effects that come into play in traction fluids under different regimes of operation in elastohydrodynamic (EHD) contacts. We take account of shear thinning and viscoelasticity and of the joint temperature and pressure dependence of these effects and show how the resulting model conforms with measured traction coefficients for a typical traction fluid. Understanding the bulk rheology of traction fluids in detail is seen as an aid to designing more effective fluids and predicting performance in real engineering systems. Moreover, the form of the constitutive model used is consistent with molecular dynamics simulation studies, as described in the companion paper[1]. Thus, a fairly complete quantitative picture of traction fluid behaviour from the molecular level through to performance in a macroscopic contact is emerging.
Technical Paper

Particulate and Hydrocarbon Emissions from a Spray Guided Direct Injection Spark Ignition Engine with Oxygenate Fuel Blends

2007-04-16
2007-01-0472
The blending of oxygenated compounds with gasoline is projected to increase because oxygenate fuels can be produced renewably, and because their high octane rating allows them to be used in substitution of the aromatic fraction in gasoline. Blending oxygenates with gasoline changes the fuels' properties and can have a profound affect on the distillation curve, both of which are known to affect engine-out emissions. In this work, the effect of blending methanol and ethanol with gasoline on unburned hydrocarbon and particulate emissions is experimentally determined in a spray guided direct injection engine. Particulate number concentration and size distribution were measured using a Cambustion DMS500. These data are presented for different air fuel ratios, loads, ignition timings and injection timings. In addition, the ASTM D86 distillation curve was modeled using the binary activity coefficients method for the fuel blends used in the experiments.
Technical Paper

Overview of the European “Particulates” Project on the Characterization of Exhaust Particulate Emissions From Road Vehicles: Results for Light-Duty Vehicles

2004-06-08
2004-01-1985
This paper presents an overview of the results on light duty vehicles collected in the “PARTICULATES” project which aimed at the characterization of exhaust particle emissions from road vehicles. A novel measurement protocol, developed to promote the production of nucleation mode particles over transient cycles, has been successfully employed in several labs to evaluate a wide range of particulate properties with a range of light duty vehicles and fuels. The measured properties included particle number, with focus separately on nucleation mode and solid particles, particle active surface and total mass. The vehicle sample consisted of 22 cars, including conventional diesels, particle filter equipped diesels, port fuel injected and direct injection spark ignition cars. Four diesel and three gasoline fuels were used, mainly differentiated with respect to their sulfur content which was ranging from 300 to below 10 mg/kg.
Technical Paper

Optimizing Engine Concepts by Using a Simple Model for Knock Prediction

2003-10-27
2003-01-3123
The objective of this paper is to present a simulation model for controlling combustion phasing in order to avoid knock in turbocharged SI engines. An empirically based knock model was integrated in a one-dimensional simulation tool. The empirical knock model was optimized and validated against engine tests for a variety of speeds and λ. This model can be used to optimize control strategies as well as design of new engine concepts. The model is able to predict knock onset with an accuracy of a few crank angle degrees. The phasing of the combustion provides information about optimal engine operating conditions.
Technical Paper

Octane Response of a Highly Boosted Direct Injection Spark Ignition Engine at Different Compression Ratios

2018-04-03
2018-01-0269
Stringent regulations on fuel economy have driven major innovative changes in the internal combustion engine design. (E.g. CAFE fuel economy standards of 54.5 mpg by 2025 in the U.S) Vehicle manufacturers have implemented engine infrastructure changes such as downsizing, direct injection, higher compression ratios and turbo-charging/super-charging to achieve higher engine efficiencies. Fuel properties therefore, have to align with these engine changes in order to fully exploit the possible benefits. Fuel octane number is a key metric that enables high fuel efficiency in an engine. Greater resistance to auto-ignition (knock) of the fuel/air mixture allows engines to be operated at a higher compression ratio for a given quantity of intake charge without severely retarding the spark timing resulting in a greater torque per mass of fuel burnt. This attribute makes a high octane fuel a favorable hydrocarbon choice for modern high efficiency engines that aim for higher fuel economy.
Journal Article

Octane Response in a Downsized, Highly Boosted Direct Injection Spark Ignition Engine

2014-04-01
2014-01-1397
Increasingly strict government emissions regulations in combination with consumer demand for high performance vehicles is driving gasoline engine development towards highly downsized, boosted direct injection technologies. In these engines, fuel consumption is improved by reducing pumping, friction and heat losses, yet performance is maintained by operating at higher brake mean effective pressure. However, the in-cylinder conditions of these engines continue to diverge from traditional naturally aspirated technologies, and especially from the Cooperative Fuels Research engine used to define the octane rating scales. Engine concepts are thus key platforms with which to screen the influence of fundamental fuel properties on future engine performance.
Technical Paper

Octane Requirement and Efficiency in a Fleet of Modern Vehicles

2017-03-28
2017-01-0810
In light of increasingly stringent CO2 emission targets, Original Equipment Manufacturers (OEM) have been driven to develop engines which deliver improved combustion efficiency and reduce energy losses. In spark ignition engines one strategy which can be used to reach this goal is the full utilization of fuel octane number. Octane number is the fuel´s knock resistance and is characterized as research octane number (RON) and motor octane number (MON). Engine knock is caused by the undesired self-ignition of the fuel air mixture ahead of the flame front initiated by the spark. It leads to pressure fluctuations that can severely damage the engine. Modern vehicles utilize different strategies to avoid knock. One extreme strategy assumes a weak fuel quality and, to protect the engine, retards the spark timing at the expense of combustion efficiency. The other extreme carefully detects knock in every engine cycle and retards the spark timing only when knock is detected.
Technical Paper

New Catalyst Preparation Procedure for OBDII-Monitoring Requirements

2001-03-05
2001-01-0933
In order to match catalyst OBDII conditions the common procedure is oven aging with air, which is not suitable for complete converter systems due to mantle corrosion. The goal was, therefore, to find an alternative procedure to ensure a defined catalyst aging that would match 1,75 times the emission standard and is also good for SULEV. The new procedure currently being developed allows the aging of metal and ceramic catalysts as well as complete catalyst systems. The paper will present the aging process, emission data of fresh and aged catalysts and the feedback to the test car OBDII system.
Technical Paper

Mechanism Analysis on the Effect of Fuel Properties on Knocking Performance at Boosted Conditions

2019-01-15
2019-01-0035
In recent years, boosted and downsized engines have gained much attention as a promising technology to improve fuel economy; however, knocking is a common issue of such engines that requires attention. To understand the knocking phenomenon under downsized and boosted engine conditions deeply, fuels with different Research Octane Number (RON) and Motor Octane Number (MON) were prepared, and the knocking performances of these fuels were evaluated using a single cylinder engine, operated under a variety of conditions. Experimental results showed that the knocking performance at boosted conditions depend on both RON and MON. While higher RON showed better anti-knocking performance, lower MON showed better anti-knocking performance. Furthermore, the tendency for a reduced MON to be beneficial became stronger at lower engine speeds and higher boost pressures, in agreement with previously published modelling work.
Journal Article

Linking the Physical Manifestation and Performance Effects of Injector Nozzle Deposits in Modern Diesel Engines

2015-04-14
2015-01-0892
The formation of deposits within injector nozzle holes of common-rail injection fuel systems fitted to modern diesel cars can reduce and disrupt the flow of fuel into the combustion chamber. This disruption in fuel flow results in reduced or less efficient combustion and lower power output. Hence there is sustained interest across the automotive industry in studying these deposits, with the ultimate aim of controlling them. In this study, we describe the use of Scanning Electron Microscopy (SEM) imaging to characterise fuel injector hole deposits at intervals throughout an adaptation of the CEC Direct Injection Common Rail Diesel Engine Nozzle Coking Test, CEC F-98-08 (DW10B test)[1]. In addition, a similar adaptation of a previously published Shell vehicle test method [2] was employed to analyse fuel injector hole deposits from a fleet of Euro 5 vehicles. During both studies, deposits were compared after fouling and after subsequent cleaning using a novel fuel borne detergent.
Journal Article

LNG Fuel Differentiation: DME/LNG Blends for HPDI Engines

2020-09-15
2020-01-2078
With increased awareness and scrutiny of greenhouse gas (GHG) emissions, the heavy-duty truck industry is on the lookout for solutions that can maximize GHG savings, through either lowering fuel consumption and lowering methane slip. This paper focuses on whether it is possible to provide a differentiated Liquefied Natural Gas (LNG) that supports the further improvement of a High-Pressure Direct Injection (HPDI) Engine. Desired improvements from this LNG blend are the lowering or substitution of the pilot Diesel use of the current HPDI engine, the lowering of the raw exhaust gas methane concentration and any additional performance improvements. Sixty-five substances were identified that could potentially be blended into cryogenic methane thus creating a differentiated LNG fuel.
X