Refine Your Search

Topic

Author

Search Results

Viewing 1 to 19 of 19
Technical Paper

The Response of a Closed Loop Controlled Diesel Engine on Fuel Variation

2008-10-06
2008-01-2471
An investigation was conducted to elucidate, how the latest turbocharged, direct injection Volkswagen diesel engine generation with cylinder pressure based closed loop control, to be launched in the US in 2008, reacts to fuel variability. A de-correlated fuels matrix was designed to bracket the range of US market fuel properties, which allowed a clear correlation of individual fuel properties with engine response. The test program consisting of steady state operating points showed that cylinder pressure based closed loop control successfully levels out the influence of fuel ignition quality, showing the effectiveness of this new technology for markets with a wide range of fuel qualities. However, it also showed that within the cetane range tested (39 to 55), despite the constant combustion mid-point, cetane number still has an influence on particulate and gaseous emissions. Volatility and energy density also influence the engine's behavior, but less strongly.
Technical Paper

Simulating PM Emissions and Combustion Stability in Gasoline/Diesel Fuelled Engines

2011-04-12
2011-01-1184
Regulations on emissions from diesel and gasoline fuelled engines are becoming more stringent in all parts of the world. Hence there is a great deal of interest in developing advanced combustion systems that offer the efficiency of a diesel engine, but with low PM and NOx. One promising approach is that of Partially-Premixed Compression Ignition (PPCI) or Low Temperature Combustion (LTC). Using this approach, PM can be reduced in compression ignition engines by promoting the mixing of fuel and air prior to combustion. This paper describes the application of an advanced combustion simulator for fuels, combustion and emissions to analyze the key processes which occur in PPCI combustion mode. A detailed chemical kinetic model with advanced PM population balance sub-model is employed in a PPCI engine context to examine the impact of ignition resistance on combustion, mixing, ignition and emissions.
Technical Paper

Octane Response of a Highly Boosted Direct Injection Spark Ignition Engine at Different Compression Ratios

2018-04-03
2018-01-0269
Stringent regulations on fuel economy have driven major innovative changes in the internal combustion engine design. (E.g. CAFE fuel economy standards of 54.5 mpg by 2025 in the U.S) Vehicle manufacturers have implemented engine infrastructure changes such as downsizing, direct injection, higher compression ratios and turbo-charging/super-charging to achieve higher engine efficiencies. Fuel properties therefore, have to align with these engine changes in order to fully exploit the possible benefits. Fuel octane number is a key metric that enables high fuel efficiency in an engine. Greater resistance to auto-ignition (knock) of the fuel/air mixture allows engines to be operated at a higher compression ratio for a given quantity of intake charge without severely retarding the spark timing resulting in a greater torque per mass of fuel burnt. This attribute makes a high octane fuel a favorable hydrocarbon choice for modern high efficiency engines that aim for higher fuel economy.
Journal Article

Octane Response in a Downsized, Highly Boosted Direct Injection Spark Ignition Engine

2014-04-01
2014-01-1397
Increasingly strict government emissions regulations in combination with consumer demand for high performance vehicles is driving gasoline engine development towards highly downsized, boosted direct injection technologies. In these engines, fuel consumption is improved by reducing pumping, friction and heat losses, yet performance is maintained by operating at higher brake mean effective pressure. However, the in-cylinder conditions of these engines continue to diverge from traditional naturally aspirated technologies, and especially from the Cooperative Fuels Research engine used to define the octane rating scales. Engine concepts are thus key platforms with which to screen the influence of fundamental fuel properties on future engine performance.
Technical Paper

New Catalyst Preparation Procedure for OBDII-Monitoring Requirements

2001-03-05
2001-01-0933
In order to match catalyst OBDII conditions the common procedure is oven aging with air, which is not suitable for complete converter systems due to mantle corrosion. The goal was, therefore, to find an alternative procedure to ensure a defined catalyst aging that would match 1,75 times the emission standard and is also good for SULEV. The new procedure currently being developed allows the aging of metal and ceramic catalysts as well as complete catalyst systems. The paper will present the aging process, emission data of fresh and aged catalysts and the feedback to the test car OBDII system.
Journal Article

Linking the Physical Manifestation and Performance Effects of Injector Nozzle Deposits in Modern Diesel Engines

2015-04-14
2015-01-0892
The formation of deposits within injector nozzle holes of common-rail injection fuel systems fitted to modern diesel cars can reduce and disrupt the flow of fuel into the combustion chamber. This disruption in fuel flow results in reduced or less efficient combustion and lower power output. Hence there is sustained interest across the automotive industry in studying these deposits, with the ultimate aim of controlling them. In this study, we describe the use of Scanning Electron Microscopy (SEM) imaging to characterise fuel injector hole deposits at intervals throughout an adaptation of the CEC Direct Injection Common Rail Diesel Engine Nozzle Coking Test, CEC F-98-08 (DW10B test)[1]. In addition, a similar adaptation of a previously published Shell vehicle test method [2] was employed to analyse fuel injector hole deposits from a fleet of Euro 5 vehicles. During both studies, deposits were compared after fouling and after subsequent cleaning using a novel fuel borne detergent.
Journal Article

Injector Fouling and Its Impact on Engine Emissions and Spray Characteristics in Gasoline Direct Injection Engines

2017-03-28
2017-01-0808
In Gasoline Direct Injection engines, direct exposure of the injector to the flame can cause combustion products to accumulate on the nozzle, which can result in increased particulate emissions. This research observes the impact of injector fouling on particulate emissions and the associated injector spray pattern and shows how both can be reversed by utilising fuel detergency. For this purpose multi-hole injectors were deliberately fouled in a four-cylinder test engine with two different base fuels. During a four hour injector fouling cycle particulate numbers (PN) increased by up to two orders of magnitude. The drift could be reversed by switching to a fuel blend that contained a detergent additive. In addition, it was possible to completely avoid any PN increase, when the detergent containing fuel was used from the beginning of the test. Microscopy showed that increased injector fouling coincided with increased particulate emissions.
Technical Paper

Impact of Diesel Fuel Composition on Soot Oxidation Characteristics

2009-04-20
2009-01-0286
The regeneration of a Diesel Particulate Filter (DPF) is dependent on both the amount and type of soot present on the filter. The objective of this work is to understand how the fuel can affect this ease with which soot can be oxidized. This soot was produced in a two-cylinder four-stroke direct-injection diesel engine, operated with a matrix of fuels with varying aromatic and sulphur level. Their oxidation behaviour in different environments was determined by Temperature Programmed Oxidation in TGA and a six-flow reactor. Transmission electron microscopy was used to examine the soot morphology. Oxidation with only O2 shows oxidation temperatures strongly dependent on the fuel type. Soot oxidation in the presence of NO and a Pt-catalyst results in a lower oxidation temperature. SO2 has an inhibiting effect leading to higher soot oxidation temperature.
Technical Paper

Heavy Duty Diesel Engine Fuel Economy: Lubricant Sensitivities

2000-06-19
2000-01-2056
The fuel consumption of heavy duty diesel engines is of great importance to fleet operators, since fuel can contribute up to 30% of the operating costs. This paper discusses the differences between fuel economy oils for heavy duty diesel engines and passenger car engines. A simple model is then presented showing how the reduced friction due to the use of fuel economy lubricants (both in the engine and the transmission) can lead to fuel consumption benefits. By including realistic losses due to air resistance and tyre rolling resistance, the model can predict fuel consumption benefits under different speed and load conditions that are in reasonable agreement with the benefits found in carefully controlled field trials.
Technical Paper

Emissions Performance of Shell GTL Fuel in the Context of Future Fuel Specifications

2006-10-16
2006-01-3325
Worldwide concern about air quality has led to ever-tougher emissions legislation for vehicles and a concomitant tightening of fuel specifications. However, not all countries or regions will move at the same rate. For example, parts of Europe and the US have already seen the introduction of the so-called “sulphur-free” fuels (i.e. <10 and <15ppm S). However, in many developing countries there are fuel specifications with sulphur limits in higher range of 1500 - 2500ppm, and other properties are also more relaxed, such as distillation or density. For a future world where larger volumes of GTL Fuel are available (2010 and beyond), it is essential to know the environmental impact of using both neat GTL and GTL blends, when compared to conventional market diesel. Moreover it is important to take into account the significant variation still anticipated for specifications of diesel between different countries.
Technical Paper

Effects of Fuel Properties Associated with In-Cylinder Behavior on Particulate Number from a Direct Injection Gasoline Engine

2017-03-28
2017-01-1002
The purpose of this work was to gain a fundamental understanding of which fuel property parameters are responsible for particulate emission characteristics, associated with key intermediate behavior in the engine cylinder such as the fuel film and insufficient mixing. Accordingly, engine tests were carried out using various fuels having different volatility and chemical compositions under different coolant temperature conditions. In addition, a fundamental spray and film visualization analysis was also conducted using a constant volume vessel, assuming the engine test conditions. As for the physical effects, the test results showed that a low volatility fuel displayed high particulate number (PN) emissions when the injection timing was advanced. The fundamental test clearly showed that the amount of fuel film on the impingement plate increased under such operating conditions with a low volatility fuel.
Technical Paper

Effect of Diesel Properties on Emissions and Fuel Consumption from Euro 4, 5 and 6 European Passenger Cars

2016-10-17
2016-01-2246
Certain diesel fuel specification properties are considered to be environmental parameters according to the European Fuels Quality Directive (FQD, 2009/EC/30) and previous regulations. These limits included in the EN 590 specification were derived from the European Programme on Emissions, Fuels and Engine Technologies (EPEFE) which was carried out in the 1990’s on diesel vehicles meeting Euro 2 emissions standards. These limits could potentially constrain FAME blending levels higher than 7% v/v. In addition, no significant work has been conducted since to investigate whether relaxing these limits would give rise to performance or emissions debits or fuel consumption benefits in more modern vehicles. The objective of this test programme was to evaluate the impact of specific diesel properties on emissions and fuel consumption in Euro 4, Euro 5 and Euro 6 light-duty diesel vehicle technologies.
Technical Paper

Development of an Injector Deposit Formation Test Method for a Medium-Duty Diesel Engine

2015-09-01
2015-01-1914
In a modern diesel engine, a high fuel injection pressure is achieved by a common-rail system. Therefore, it is important to understand the effects of fuel properties on engine performances because a diesel fuel could deteriorate inside an injector at such severe conditions. The test methods so far basically use the fuel with pro-fouling agent to form deposit on injector. In this study, a novel test procedure was developed to evaluate the effect of the use of the fuel with and without zinc contaminant on injector performance. With Zn doped European specification B7 fuel (7% biodiesel) as a reference, the test result showed that an engine torque decreased almost lineally over time, and the overall torque drop was 9% after 300 hours. The investigation of the dismantled injector after the test revealed that the deposit was not formed on the sliding parts of the injector, but on the nozzle hole surface.
Technical Paper

Combustion and Emissions Performance Analysis of Conventional and Future Fuels using Advanced CAE

2013-10-14
2013-01-2673
In recent years, there has been rapid progress in characterizing the detailed chemical kinetics associated with the oxidation of liquid hydrocarbons and their blends. However adding these fuel models to the industrial engineer's toolkit has proven a major challenge due to issues associated with high CPU cost and the poor suitability of many of the most promising and well known fuel models to IC engine applications. This paper demonstrates the state-of-the-art in the analysis and modelling of current and future transportation fuels or fuel blends for internal combustion engine applications. First-of-all, a benchmarking of eleven representative fuel models (39 to 1034 species in size) is carried out at engine/engine-like operating conditions by adopting the standard Research Octane and Cetane Number test data for comparison. Next, methods to construct a fuel model for a commercial fuel are outlined using a simple, yet robust surrogate mapping technique.
Technical Paper

Combustion Imaging and Analysis in a Gasoline Direct Injection Engine

2004-03-08
2004-01-0045
A single cylinder Direct Injection Spark Ignition (DISI) engine with optical access has been used for combustion studies with both early injection and late injection for stratified charge operation. Cylinder pressure records have been used for combustion analysis that has been synchronised with the imaging. A high speed cine camera has been used for imaging combustion within a cycle, while a CCD camera has been used for imaging at fixed crank angles, so as to obtain information on cycle-by-cycle variations. The CCD images have also been analysed to give information on the quantity of soot present during combustion. Tests have been conducted with a reference unleaded gasoline (ULG), and pure fuel components: iso-octane (a representative alkane), and toluene (a representative aromatic). The results show diffusion-controlled combustion occurring in so-called homogeneous combustion with early injection.
Technical Paper

An Optical Characterization of the Effect of High-Pressure Hydrodynamic Cavitation on Diesel

2016-04-05
2016-01-0841
Most modern high-pressure common rail diesel fuel injection systems employ an internal pressure equalization system in order to support needle lift, enabling precise control of the injected fuel mass. This results in the return of a fraction of the high-pressure diesel back to the fuel tank. The diesel fuel flow occurring in the injector spill passages is expected to be a cavitating flow, which is known to promote fuel ageing. The cavitation of diesel promotes nano-particle formation through induced pyrolysis and oxidation, which may result in deposits in the vehicle fuel system. A purpose-built high-pressure cavitation flow rig has been employed to investigate the stability of unadditised crude-oil derived diesel and paraffin-blend model diesel, which were subjected to continuous hydrodynamic cavitation flow across a single-hole research diesel nozzle.
Technical Paper

An Optical Characterization of Atomization in Non-Evaporating Diesel Sprays

2016-04-05
2016-01-0865
High-speed planar laser Mie scattering and Laser Induced Fluorescence (PLIF) were employed for the determination of Sauter Mean Diameter (SMD) distribution in non-evaporating diesel sprays. The effect of rail pressure, distillation profile, and consequent fuel viscosity on the drop size distribution developing during primary and secondary atomization was investigated. Samples of conventional crude-oil derived middle-distillate diesel and light distillate kerosene were delivered into an optically accessible mini-sac injector, using a customized high-pressure common rail diesel fuel injection system. Two optical channels were employed to capture images of elastic Mie and inelastic LIF scattering simultaneously on a high-speed video camera at 10 kHz. Results are presented for sprays obtained at maximum needle lift during the injection. These reveal that the emergent sprays exhibit axial asymmetry and vorticity.
Journal Article

An Investigation into the Characteristics of DISI Injector Deposits Using Advanced Analytical Methods

2014-10-13
2014-01-2722
There is an increasing recognition of injector deposit (ID) formation in fuel injection equipment as direct injection spark ignition (DISI) engine technologies advance to meet increasingly stringent emission legislation and fuel economy requirements. While it is known that the phenomena of ID in DISI engines can be influenced by changes in fuel composition, including increasing usage of aliphatic alcohols and additive chemistries to enhance fuel performance, there is however still a great deal of uncertainty regarding the physical and chemical structure of these deposits, and the mechanisms of deposit formation. In this study, a mechanical cracking sample preparation technique was developed to assess the deposits across DISI injectors fuelled with gasoline and blends of 85% ethanol (E85).
Technical Paper

A Study on the Effects of Cetane Number on the Energy Balance between Differently Sized Engines

2017-03-28
2017-01-0805
This paper investigates the effect of the cetane number (CN) of a diesel fuel on the energy balance between a light duty (1.9L) and medium duty (4.5L) diesel engine. The two engines have a similar stroke to bore (S/B) ratio, and all other control parameters including: geometric compression ratio, cylinder number, stroke, and combustion chamber, have been kept the same, meaning that only the displacement changes between the engine platforms. Two Coordinating Research Council (CRC) diesel fuels for advanced combustion engines (FACE) were studied. The two fuels were selected to have a similar distillation profile and aromatic content, but varying CN. The effects on the energy balance of the engines were considered at two operating conditions; a “low load” condition of 1500 rev/min (RPM) and nominally 1.88 bar brake mean effective pressure (BMEP), and a “medium load” condition of 1500 RPM and 5.65 BMEP.
X