Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Real-World Emissions Measurements of a Gasoline Direct Injection Vehicle without and with a Gasoline Particulate Filter

2017-03-28
2017-01-0985
The market share of Gasoline Direct Injection (GDI) vehicles has been increasing, promoted by its positive contribution to the overall fleet fuel economy improvement. It has however been reported that this type of engine is emitting more ultrafine particles than the Euro 6c Particle Number (PN) limit of 6·1011 particles/km that will be introduced in Europe as of September 2017 in parallel with the Real Driving Emission (RDE) procedure. The emissions performance of a Euro 6b GDI passenger car was measured, first in the OEM build without a Gasoline Particulate Filter (GPF) and then as a demonstrator with a coated GPF in the underfloor position. Regulated emissions were measured on the European regulatory test cycles NEDC and WLTC and in real-world conditions with Portable Emissions Measurement Systems (PEMS) according to the published European RDE procedure (Commission Regulation (EU) 2016/427 and 2016/646).
Journal Article

Impact of FAME Content on the Regeneration Frequency of Diesel Particulate Filters (DPFs)

2014-04-01
2014-01-1605
Modern diesel vehicles utilize two technologies, one fuel based and one hardware based, that have been motivated by recent European legislation: diesel fuel blends containing Fatty Acid Methyl Esters (FAME) and Diesel Particulate Filters (DPF). Oxygenates, like FAME, are known to reduce PM formation in the combustion chamber and reduce the amount of soot that must be filtered from the engine exhaust by the DPF. This effect is also expected to lengthen the time between DPF regenerations and reduce the fuel consumption penalty that is associated with soot loading and regeneration. This study investigated the effect of FAME content, up to 50% v/v (B50), in diesel fuel on the DPF regeneration frequency by repeatedly running a Euro 5 multi-cylinder bench engine over the European regulatory cycle (NEDC) until a specified soot loading limit had been reached.
Technical Paper

Effect of Octane on the Performance of Two Gasoline Direct Injection Passenger Cars

2015-04-14
2015-01-0767
The performance aspect of gasoline combustion has traditionally been measured using Research Octane Number (RON) and Motor Octane Number (MON) which describe antiknock performance under different conditions. Recent literature suggests that MON is less important than RON in modern cars and a relaxation in the MON specification could improve vehicle performance, while also helping refiners in the production of gasoline. At the same time, for the same octane number change, increasing RON appears to provide more benefit to engine power and acceleration than reducing MON. It has also been suggested that there could be fuel efficiency benefits (on a tank to wheels basis) for specially adapted engines, for example, operating at higher compression ratio, on very high RON (100+). Other workers have advocated the use of an octane index (OI) which incorporates both RON and MON to give an indication of octane quality.
X