Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Understanding the Octane Appetite of Modern Vehicles

Octane appetite of modern engines has changed as engine designs have evolved to meet performance, emissions, fuel economy and other demands. The octane appetite of seven modern vehicles was studied in accordance with the octane index equation OI=RON-KS, where K is an operating condition specific constant and S is the fuel sensitivity (RONMON). Engines with a displacement of 2.0L and below and different combinations of boosting, fuel injection, and compression ratios were tested using a decorrelated RONMON matrix of eight fuels. Power and acceleration performance were used to determine the K values for corresponding operating points. Previous studies have shown that vehicles manufactured up to 20 years ago mostly exhibited negative K values and the fuels with higher RON and higher sensitivity tended to perform better.
Technical Paper

Octane Response of a Highly Boosted Direct Injection Spark Ignition Engine at Different Compression Ratios

Stringent regulations on fuel economy have driven major innovative changes in the internal combustion engine design. (E.g. CAFE fuel economy standards of 54.5 mpg by 2025 in the U.S) Vehicle manufacturers have implemented engine infrastructure changes such as downsizing, direct injection, higher compression ratios and turbo-charging/super-charging to achieve higher engine efficiencies. Fuel properties therefore, have to align with these engine changes in order to fully exploit the possible benefits. Fuel octane number is a key metric that enables high fuel efficiency in an engine. Greater resistance to auto-ignition (knock) of the fuel/air mixture allows engines to be operated at a higher compression ratio for a given quantity of intake charge without severely retarding the spark timing resulting in a greater torque per mass of fuel burnt. This attribute makes a high octane fuel a favorable hydrocarbon choice for modern high efficiency engines that aim for higher fuel economy.
Technical Paper

Mechanism Analysis on the Effect of Fuel Properties on Knocking Performance at Boosted Conditions

In recent years, boosted and downsized engines have gained much attention as a promising technology to improve fuel economy; however, knocking is a common issue of such engines that requires attention. To understand the knocking phenomenon under downsized and boosted engine conditions deeply, fuels with different Research Octane Number (RON) and Motor Octane Number (MON) were prepared, and the knocking performances of these fuels were evaluated using a single cylinder engine, operated under a variety of conditions. Experimental results showed that the knocking performance at boosted conditions depend on both RON and MON. While higher RON showed better anti-knocking performance, lower MON showed better anti-knocking performance. Furthermore, the tendency for a reduced MON to be beneficial became stronger at lower engine speeds and higher boost pressures, in agreement with previously published modelling work.
Journal Article

Impact of Fuel Sensitivity (RON-MON) on Engine Efficiency

Modern spark ignition engines can take advantage of better fuel octane quality either towards improving acceleration performance or fuel economy via an active ignition management system. Higher fuel octane allows for spark timing advance and consequently higher torque output and higher engine efficiency. Additionally, engines can be designed with higher compression ratios if a higher anti-knock quality fuel is used. Due to historical reasons, Research Octane (RON) and Motor Octane Number (MON) are the metrics used to characterize the anti-knock quality of a fuel. The test conditions used to compute RON and MON correlated well with those in older engines designed about 20 years ago. But the correlation has drifted considerably in the recent past due to advances in engine infrastructures mainly governed by stringent fuel economy and emission standards.