Refine Your Search

Topic

Author

Search Results

Journal Article

Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing

2014-04-01
2014-01-1185
The paper discusses the concept, design and final results from the ‘Ultra Boost for Economy’ collaborative project, which was part-funded by the Technology Strategy Board, the UK's innovation agency. The project comprised industry- and academia-wide expertise to demonstrate that it is possible to reduce engine capacity by 60% and still achieve the torque curve of a modern, large-capacity naturally-aspirated engine, while encompassing the attributes necessary to employ such a concept in premium vehicles. In addition to achieving the torque curve of the Jaguar Land Rover naturally-aspirated 5.0 litre V8 engine (which included generating 25 bar BMEP at 1000 rpm), the main project target was to show that such a downsized engine could, in itself, provide a major proportion of a route towards a 35% reduction in vehicle tailpipe CO2 on the New European Drive Cycle, together with some vehicle-based modifications and the assumption of stop-start technology being used instead of hybridization.
Technical Paper

The M111 Engine CCD and Emissions Test: Is it Relevant to Real-World Vehicle Data?

2002-05-06
2002-01-1642
A European test procedure for evaluating engine deposits, using the Mercedes Benz M111 bench engine, has already been approved for inlet valve deposits (IVD) and is under development for combustion chamber deposits (CCD) by the Co-ordinating European Council (CEC). This paper describes CCD effects on emissions using a slightly modified version of this engine test procedure and compares it with CCD/emissions data from road vehicles. The engine used was a modern four valve, four cylinder, 2.0 litre passenger car unit and the bench test procedure used extended the operating time from the specified 60 hours to 180 hours. The road vehicle trial used two Mercedes Benz C200 passenger cars fitted with the M111 engine and two Ford Mondeo 2.0 litre passenger cars. Data was collected up to 11200km, approximately equivalent to 180 hours operation of the bench engine.
Technical Paper

The Effects of Octane, Sensitivity and K on the Performance and Fuel Economy of a Direct Injection Spark Ignition Vehicle

2014-04-01
2014-01-1216
This study investigates the effects of octane quality on the performance, i.e., acceleration and power, and fuel economy (FE) of one late model US vehicle, which is powered by a small displacement, turbocharged, gasoline direct injection (GDI) engine. The relative importance of the gasoline parameters Research and Motor Octane Number (RON and MON) in meeting the octane requirement of this engine to run at an optimum spark timing for the given demand was considered by evaluating the octane index (OI), where OI = (1-K) RON + K MON and K is a constant depending on engine design and operating conditions. Over wide open throttle (WOT) accelerations, the average K of this Pontiac Solstice was determined as −0.75, whereby a lower MON would give a higher OI, a higher knock resistance and better performance.
Journal Article

The Effect of Engine, Axle and Transmission Lubricant, and Operating Conditions on Heavy Duty Diesel Fuel Economy: Part 2: Predictions

2011-08-30
2011-01-2130
A predictive model for estimating the fuel saving of “top tier” engine, axle and transmission lubricants (compared to “mainstream” lubricants), in a heavy duty truck, operating on a realistic driving cycle, is described. Simulations have been performed for different truck weights (10, 20 and 40 tonnes) and it was found that the model predicts percentage fuel economy benefits that are of a similar magnitude to those measured in well controlled field trials1. The model predicts the percentage fuel saving from the engine oil should decrease as the vehicle load increases (which is in agreement with field trial results). The percentage fuel saving from the axle and gearbox oils initially decreases with load and then stays more or less constant. This behaviour is due to the detailed way in which axle and gearbox efficiency varies with speed/load and lubricant type.
Journal Article

The Effect of Engine, Axle and Transmission Lubricant, and Operating Conditions on Heavy Duty Diesel Fuel Economy. Part 1: Measurements

2011-08-30
2011-01-2129
It is expected that the world's energy demand will double by 2050, which requires energy-efficient technologies to be readily available. With the increasing number of vehicles on our roads the demand for energy is increasing rapidly, and with this there is an associated increase in CO₂ emissions. Through the careful use of optimized lubricants it is possible to significantly reduce vehicle fuel consumption and hence CO₂. This paper evaluates the effects on fuel economy of high quality, low viscosity heavy-duty diesel engine type lubricants against mainstream type products for all elements of the vehicle driveline. Testing was performed on Shell's driveline test facility for the evaluation of fuel consumption effects due to engine, gearbox and axle oils and the variation with engine operating conditions.
Technical Paper

The Application of Telematics to the High-Precision Assessment of Fuel-Borne Fuel Economy Additives

2012-09-10
2012-01-1738
The demonstration benefit from fuel-borne fuel-economy additives to a precision of 1%, or better, traditionally requires very careful experimental design and considerable resource intensity. In practice, the process usually requires the use of well-defined drive cycles (e.g. emission certification cycles HFET, NEDC) in conjunction with environmentally-controlled chassis dynamometer facilities. Against this background, a method has been developed to achieve high-precision fuel economy comparison of gasoline fuels with reduced resource intensity and under arbitrary real-world driving conditions. The method relies upon the inference of instantaneous fuel consumption via the collection of OBD data and the simultaneous estimation of instantaneous engine output from vehicle dynamical behaviour.
Technical Paper

Research on the Effect of Lubricant Oil and Fuel Properties on LSPI Occurrence in Boosted S. I. Engines

2016-10-17
2016-01-2292
The effects of lubricant oil and fuel properties on low speed pre-ignition (LSPI) occurrence in boosted S.I. engines were experimentally evaluated with multi-cylinder engine and de-correlated oil and fuel matrices. Further, the auto-ignitability of fuel spray droplets and evaporated homogeneous fuel/oil mixtures were evaluated in a combustion bomb and pressure differential scanning calorimetry (PDSC) tests to analyze the fundamental ignition process. The work investigated the effect of engine conditions, fuel volatility and various lubricant additives on LSPI occurrence. The results support the validity of aspects of the LSPI mechanism hypothesis based on the phenomenon of droplets of lubricant oil/fuel mixture (caused by adhesion of fuel spray on the liner wall) flying into the chamber and autoigniting before spark ignition.
Technical Paper

Octane Sensitivity in Gasoline Fuels Containing Nitro-Alkanes: A Possible Means of Controlling Combustion Phasing for HCCI

2009-04-20
2009-01-0301
Addition of nitroalkanes to gasoline is shown to reduce the octane quality. The reduction in the Motor Octane Number (MON) is greater than the reduction in the Research Octane Number (RON). In other words addition of nitroalkanes causes an increase in octane sensitivity. The temperature of the compressed air/fuel mixture in the MON test is higher then in the RON test. Through chemical kinetic modelling, we are able to show how the temperature dependence of the reactions responsible for break-up of the nitroalkane molecule can lead to an increase in octane sensitivity. Results are presented from an Homogenous Charge Compression Ignition (HCCI) engine with a homogeneous charge in which the air intake temperature was varied. When the engine was operated on gasoline-like fuels containing nitroalkanes, it was observed that the combustion phasing was much more sensitive to the air intake temperature. This suggests a possible means of controlling combustion phasing for HCCI.
Journal Article

Multi-Vehicle Evaluation of Gasoline Additive Packages: A Fourth Generation Protocol for the Assessment of Intake System Deposit Removal

2009-11-02
2009-01-2635
Building on two decades of expertise, a fourth generation fleet test protocol is presented for assessing the response of engine performance to gasoline additive treatment. In this case, the ability of additives to remove pre-existing deposit from the intake systems of port fuel injected vehicles has been examined. The protocol is capable of identifying real benefits under realistic market conditions, isolating fuel performance from other effects thereby allowing a direct comparison between different fuels. It is cost efficient and robust to unplanned incidents. The new protocol has been applied to the development of a candidate fuel additive package for the North American market. A vehicle fleet of 5 quadruplets (5 sets of 4 matched vehicles, each set of a different model) was tested twice, assessing the intake valve clean-up performance of 3 test fuels relative to a control fuel.
Technical Paper

Lubrication, Tribology & Motorsport

2002-12-02
2002-01-3355
We review some of the key tribological issues of relevance to motorsport applications. Tribology is the science of friction and wear, and in a high performance engine, friction and wear are controlled by good component design (e.g. the engine and the transmission) and also by the use of high performance lubricants with the correct physical (and chemical) properties, matched to the machine they are used in. In other words, design of a specific lubricant for specific hardware can lead to optimised performance. (Tribology is also important in the tire-road contact but are not considered here.) The importance of key physical properties of a lubricant is demonstrated with an emphasis on how the choice of the correct lubricant can help to minimize engine friction (and thus increase available power output) whilst protecting against engine wear. Key lubricant parameters discussed in the paper are the viscosity variation of a lubricant with temperature, shear rate and pressure.
Technical Paper

Influence of Laminar Burning Velocity on Performance of Gasoline Engines

2012-09-10
2012-01-1742
Laminar burning velocity is a fundamental combustion property of any fuel/air mixture. Formulating gasoline fuel blends having faster burning velocities can be an effective strategy for enhancing engine and vehicle performance. Formulation of faster burning fuels by changing the fuel composition has been explored in this work leading to a clear correlation between engine performance and fuel burning velocity. In principle a gasoline vehicle should be calibrated to give optimal ignition timing (also known as MBT - minimum spark advance for best torque) while at the same time avoiding any possible engine knock. However, modern downsized/boosted engines frequently tend to be limited by knock and the spark timing is retarded in respect of the optimum. In such scenarios, faster burning fuels can lead to a more optimum combustion phasing resulting in a more efficient energy transfer and hence a faster acceleration and better performance.
Technical Paper

Influence of Fuel Properties on Lubricant Oxidative Stability:Part 1 - Engine Tests

2005-10-24
2005-01-3839
Lubricant samples were aged on a SI bench engine that was run using ten different gasoline fuels. For each gasoline tested, the oxidative stability of the lubricant and the extent of engine wear was assessed in terms of a number of different parameters. Surprisingly, it was found that fuels containing higher levels of olefin (whether C8 olefin, or a C5/C6 olefin blend, or a catalytically cracked refinery stream) performed directionally better than a reference gasoline with low levels of aromatics and olefins. Fuels with a higher final boiling point and higher aromatic content, appeared to be associated with enhanced levels of sludge formation than the reference gasoline, but did not give rise to enhanced engine wear.
Technical Paper

Impact of Demanding Low Temperature Urban Operation on the Real Driving Emissions Performance of Three European Diesel Passenger Cars

2018-09-10
2018-01-1819
In Europe, the development and implementation of new regulatory test procedures including the chassis dynamometer (CD) based World Harmonised Light Duty Test Procedure (WLTP) and the Real Driving Emissions (RDE) procedure, has been driven by the close scrutiny that real driving emissions and fuel consumption from passenger cars have come under in recent times. This is due to a divergence between stated certification performance and measured on-road performance, and has been most pointed in the case of NOx (oxides of nitrogen) emissions from diesel cars. The RDE test is certainly more relevant than CD test cycles, but currently certification RDE cycles will not necessarily include the most extreme low speed congested or low temperature conditions which are likely to be more challenging for NOx after-treatment systems.
Technical Paper

GTL Fuel Impact on DI Diesel Emissions

2007-07-23
2007-01-2004
Reduction of exhaust emissions was investigated in a modern diesel engine equipped with advanced diesel after treatment system using a Gas-to-Liquid (GTL) fuel, a cleaner burning alternative diesel fuel. This fuel has near zero sulfur and aromatics and high cetane number. Some specially prepared GTL fuel samples were used to study the effects of GTL fuel distillation characteristics on exhaust emissions before engine modification. Test results indicated that distillation range of GTL fuels has a significant impact on engine out PM. High cetane number also improved HC and CO emissions, while these fuel properties have little effect on NOx emissions. From these results, it was found that low distillation range and high cetane number GTL fuel can provide a favorable potential in NOx/PM emissions trade-off. In order to improve the tail-pipe emissions in the latest diesel engine system, the engine modifications were carried out for the most favorable GTL fuel sample.
Technical Paper

Future fuels and lubricant base oils from Shell Gas to Liquids (GTL) technology

2005-05-11
2005-01-2191
Shell was the first oil marketer to bring to commercial scale, Gas to Liquids (GTL) technology for fuels and base oils production. This started with the commissioning of the multi-purpose GTL facility at Bintulu, Malaysia in 1993. The plant produces both automotive gas oil (GTL Fuel) as well as a number of speciality products including detergent feedstocks, a range of Fisher-Tropsch commercial wax grades, and a feedstock for base oils production. The base oil feedstock has been shipped to Shell facilities in Japan and France since 1994 where it is solvent de-waxed to produce the first commercially available GTL base oils. The GTL Fuel is currently being used in premium diesels in Germany, Greece and Thailand. Shell has announced in 2003 its intention to build two world scale GTL trains in Qatar and this will include substantial fuels and base oils facilities.
Technical Paper

Fuel Effects on Regulated Emissions from Modern Gasoline Vehicles

2004-06-08
2004-01-1886
The influence of gasoline quality on exhaust emissions has been evaluated using four modern European gasoline cars with advanced features designed to improve fuel economy and CO2 emissions, including stoichiometric direct injection, lean direct injection and MPI with variable valve actuation. Fuel effects studied included sulphur content, evaluated over a range from 4 to 148 mg/kg, and other gasoline properties, including aromatics content, olefins content, volatility and final boiling point (FBP). All four cars achieved very low emissions levels, with some clear differences between the vehicle technologies. Even at these low emissions levels, all four cars showed very little short-term sensitivity to gasoline sulphur content. The measured effects of the other gasoline properties were small and often conflicting, with differing directional responses for different vehicles and emissions.
Technical Paper

Fuel Effects on Regulated Emissions From Advanced Diesel Engines and Vehicles

2004-06-08
2004-01-1880
The introduction of sulphur-free fuels will enable advanced engine and exhaust after-treatment technologies to meet increasingly stringent exhaust emissions regulations. As these cleaner fuels and vehicles are introduced, the potential for further improvements in air quality through changes to fuel properties can be expected to diminish. Nevertheless, CONCAWE has continued to update knowledge by evaluating fuel effects on emissions from new engine/vehicle technologies as they approach the market. In this work, carried out as part of CONCAWE's contribution to the EU “PARTICULATES” consortium [1], two advanced light-duty diesel vehicles and three heavy-duty diesel engines covering Euro-3 to Euro-5 technologies, were tested. The fuels tested covered a range of sulphur content and compared conventional fuels with extreme fuel compositions such as Swedish Class 1 and Fischer Tropsch diesel fuels.
Technical Paper

Fuel Effects on Emissions from Gasoline Vehicles for the Asian Market

2008-06-23
2008-01-1765
In this study, the influence of gasoline composition on exhaust emissions has been evaluated using three gasoline vehicles. Although the vehicles were obtained within Europe, each is representative of models to be found in Asian markets. Two of the vehicles were current Euro 4 certification, while the third was of Euro 2 certification equivalent to that available in specific Asian markets. Fuel effects studied included aromatics, olefins and benzene content. Other fuel properties were held constant within the normal constraints of blending when using realistic gasoline components. An orthogonal matrix of eight fuels was blended to evaluate these properties over the ranges: Aromatics (excluding benzene) 34% to 49%, olefins 18% to 25% and benzene 1% to 5%. All fuels were tested in all three cars driving the current legislative NEDC cycle, using a randomised block design with at least 3 repeats on each fuel/vehicle combination.
Technical Paper

Fuel Effects in a Boosted DISI Engine

2011-08-30
2011-01-1985
Due to the recent drive to reduce CO₂ emissions, the turbocharged direct injection spark ignition (turbo DISI) gasoline engine has become increasingly popular. In addition, future turbo DISI engines could incorporate a form of charge dilution (e.g., lean operation or external EGR) to further increase fuel efficiency. Thus, the conditions experienced by the fuel before and during combustion are and will continue to be different from those experienced in naturally aspirated SI engines. This work investigates the effects of fuel properties on a modern and prototype turbo DISI engine, with particular focus on the octane appetite: How relevant are RON and MON in predicting a fuel's anti-knock performance in these modern/future engines? It is found that fuels with high RON and low MON values perform the best, suggesting the current MON requirements in fuel specifications could actually be detrimental.
Journal Article

Formation and Removal of Injector Nozzle Deposits in Modern Diesel Cars

2013-04-08
2013-01-1684
Deposits forming in the injector nozzle holes of modern diesel cars can reduce and disrupt the fuel injected into the combustion chamber, causing reduced or less efficient combustion, resulting in power loss and increased fuel consumption. A study of the factors affecting injector nozzle tip temperature, a parameter critical to nozzle deposit formation, has been conducted in a Peugeot DW10 passenger car bench engine, as used in the industry standard CEC F-098 injector nozzle deposit test, [1]. The findings of the bench engine study were applied in the development of a Chassis Dynamometer (CD) based vehicle test method using Euro 5 compliant vehicles. The developed test method was refined to tune the conditions as far as practicable towards a realistic driving pattern whilst maintaining sufficient deposit forming tendency to enable test duration to be limited to a reasonable period.
X