Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Impact of Chemical Contaminants on Stoichiometric Natural Gas Engine Three-Way Catalysts with High Mileage History

2022-03-29
2022-01-0542
Stoichiometric natural gas engines with three-way catalysts emit less NOx and CH4 due to their higher efficiency compared to lean-burn natural gas engines. Although hydrothermal aging of three-way catalysts has been extensively studied, a deeper understanding beyond hydrothermal aging is needed to explain real-world performance, especially for natural gas engines with near-zero NOx emissions. In this investigation, field-aged three-way catalysts were characterized to identify the contribution of chemical aging to their overall performance. It was found that the sulfur species on the field-aged TWCs were entirely distributed along the catalyst length, showing a decreasing trend, whereas phosphorous contamination was mainly observed at the inlet section of the three-way catalysts, and the phosphorous concentration declined sharply along the axial length.
Journal Article

Effect of Transition Metal Ion Properties on the Catalytic Functions and Sulfation Behavior of Zeolite-Based SCR Catalysts

2017-03-28
2017-01-0939
Copper- and Iron- based metal-zeolite SCR catalysts are widely used in US and European diesel aftertreatment systems to achieve drastic reduction in NOx emission. These catalysts are highly selective to N2 under wide range of operating conditions. Nevertheless, the type of transition metal has a significant impact on the key performance and durability parameters such as NOx conversion, selectivity towards N2O, hydrothermal stability, and sensitivity to fuel sulfur content. In this study, we explained the differences in the performance characteristics of these catalysts based on their relative acidic-basic nature of transition metal present in these catalysts using practically relevant gas species present in diesel exhaust such as NO2, SOx, and NH3. These experiments show that Fe-zeolite has relatively acidic nature as compared to Cu-zeolite that causes NH3 inhibition and hence explains low NOx conversion on Fe-zeolite at low temperature under standard SCR conditions.
Technical Paper

Diagnostics of Field-Aged Three-Way Catalyst (TWC) on Stoichiometric Natural Gas Engines

2019-04-02
2019-01-0998
Three-way catalysts have been used in a variety of stoichiometric natural gas engines for emission control. During real-world operation, these catalysts have experienced a large number of temporary and permanent deactivations including thermal aging and chemical contamination. Thermal aging is typically induced either by high engine-out exhaust temperatures or the reaction exotherm generated on the catalysts. Chemical contamination originates from various inorganic species such as Phosphorous (P) and Sulfur (S) that contain in engine fluids, which can poison and/or mask the catalyst active components. Such deactivations are quite difficult to simulate under laboratory conditions, due to the fact that multiple deactivation modes may occur at the same time in the real-world operations. In this work, a set of field-aged TWCs has been analyzed through detailed laboratory research in order to identify and quantify the real-world aging mechanisms.
X