Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Zero-Venting, Regenerable, Lightweight Heat Rejection for EVA Suits

2005-07-11
2005-01-2974
Future space exploration missions will require a lightweight spacesuit that expends no consumables. This paper describes the design and performance of a prototype heat rejection system that weighs less than current systems and vents zero water. The system uses regenerable LiCl/water absorption cooling. Absorption cooling boosts the heat absorbed from the crew member to a high temperature for rejection to space from a compact, non-venting radiator. The system is regenerated by heating to 100°C for two hours. The system provides refrigeration at 17°C and rejects heat at temperatures greater than 50°C. The overall cooling capacity is over 100 W-hr/kg.
Technical Paper

Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

2006-07-17
2006-01-2238
In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series of tubes through which cooling water is circulated. To better predict the effectiveness of the LCVG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Thermal Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained.
Technical Paper

Water Reclamation Technology Development for Future Long Range Missions

1992-07-01
921351
This paper covers the development of computer simulation models of the Vapor Compression Distillation (VCD) process, the Super Critical Water Oxidation (SCWO) process, and two versions of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) process. These process level models have combined into two Integrated Water Reclamation Systems (IWRS). Results from these integrated models, in conjunction with other data sources, have been used to develop a preliminary comparison of the two systems. Also discussed in this paper is the development of a Vapor Phase Catalytic Ammonia Reduction teststand and the development of a new urine analog for use with the teststand and computer models.
Journal Article

Waste Management Technology and the Drivers for Space Missions

2008-06-29
2008-01-2047
Since the mid 1980s, NASA has developed advanced waste management technologies that collect and process waste. These technologies include incineration, hydrothermal oxidation, pyrolysis, electrochemical oxidation, activated carbon production, brine dewatering, slurry bioreactor oxidation, composting, NOx control, compaction, and waste collection. Some of these technologies recover resources such as water, oxygen, nitrogen, carbon dioxide, carbon, fuels, and nutrients. Other technologies such as the Waste Collection System (WCS - the commode) collect waste for storage or processing. The need for waste processing varies greatly depending upon the mission scenario. This paper reviews the waste management technology development activities conducted by NASA since the mid 1980s and explores the drivers that determine the application of these technologies to future missions.
Technical Paper

Vapor Phase Catalytic Ammonia Reduction

1994-06-01
941398
This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon™ soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor.
Technical Paper

Utilization of On-Site Resources for Regenerative Life Support Systems at Lunar and Martian Outposts

1993-07-01
932091
Lunar and martian materials can be processed and used at planetary outposts to reduce the need (and thus the cost) of transporting supplies from Earth. A variety of uses for indigenous, on-site materials have been suggested, including uses as rocket propellants, construction materials, and life support materials. Utilization of on-site resources will supplement Regenerative Life Support Systems (RLSS) that will be needed to regenerate air, water, and wastes, and to produce food (e.g., plants) for human consumption during long-duration space missions.
Technical Paper

Total Organic Carbon Analyzer For ISS

1998-07-13
981765
On the International Space Station (ISS), atmospheric humidity condensate and other waste waters will be recycled and treated to produce potable water for use by the crews. Space Station requirements include an on-orbit capability for real-time monitoring of key water quality parameters, such as total organic carbon (TOC), total inorganic carbon (TIC), total carbon (TC), pH, and conductivity, to ensure that crew health is protected during consumption of reclaimed water. The Crew Health Care System (CHeCS) for ISS includes an analyzer that has been designed to meet this requirement. The analyzer is adapted from commercially successful technology, and it measures TOC and TIC throughout the range from 1 to 50,000 μg/L, and TC from 1 to 100,000 μg/L. It measures pH between 2.0 and 12.0 pH units, and conductivity from 0.1 to 300 μmho/cm. The analyzer is scheduled for launch to ISS on mission 2A.1.
Technical Paper

The Porous Plate Sublimator as the X-38/CRV (Crew Return Vehicle) Orbital Heat Sink

1999-07-12
1999-01-2004
A porous plate sublimator (based on an existing Lunar Module LM-209 design) is baselined as a heat rejection device for the X-38 vehicle due to its simplicity, reliability, and flight readiness. The sublimator is a passive device used for rejecting heat to the vacuum of space by sublimating water to obtain efficient heat rejection in excess of 1,000 Btu/lb of water. It is ideally suited for the X-38/CRV mission as it requires no active control, has no moving parts, has 100% water usage efficiency, and is a well-proven technology. Two sublimators have been built and tested for the X-38 program, one of which will fly on the NASA V-201 space flight demonstrator vehicle in 2001. The units satisfied all X-38 requirements with margin and have demonstrated excellent performance. Minor design changes were made to the LM-209 design for improved manufacturability and parts obsolescence.
Technical Paper

The General Purpose Work Station, A Spacious Microgravity Workbench

1992-07-01
921394
The General Purpose Work Station (GPWS) is a laboratory multi-use facility, as demonstrated during the Spacelab Life Sciences 1 (SLS-1) flight. The unit provided particulate containment under varying conditions, served as an effective work space for manipulating live animals, e.g., rats, served as a containment facility for fixatives, and was proposed for use to conduct in-flight maintenance during connector pin repair. The cabinet has a front door large enough to allow installation of a full-size microscope in-flight and is outfitted with a side window to allow delivery of items into the cabinet without exposure to the spacelab atmosphere. Additional support subsystems include inside cabinet mounting, surgical glove fine manipulations capability, and alternating or direct current power supply for experiment equipment, as will be demonstrated during Spacelab J.
Technical Paper

The Development of the Wiped-Film Rotating-Disk Evaporator for the Reclamation of Water at Microgravity

2002-07-15
2002-01-2397
This project is a Phase III SBIR contract between NASA and Water Reuse Technology (WRT). It covers the redesign, modification, and construction of the Wiped-Film Rotating-Disk (WFRD) evaporator for use in microgravity and its integration into a Vapor Phase Catalytic Ammonia Removal (VPCAR) system. VPCAR is a water processor technology for long duration space exploration applications. The system is designed as an engineering development unit specifically aimed at being integrated into NASA Johnson Space Center's Bioregenerative Planetary Life Support Test Complex (BIO-Plex). The WFRD evaporator and the compressor are being designed and built by WRT. The balance of the VPCAR system and the integrated package are being designed and built by Hamilton Sundstrand Space Systems International, Inc. (HSSSI) under a subcontract with WRT. This paper provides a description of the VPCAR technology and the advances that are being incorporated into the unit.
Technical Paper

The Development of the Vapor Phase Catalytic Ammonia Removal (VPCAR) Engineering Development Unit

2004-07-19
2004-01-2495
This paper presents the results of a program to develop the next generation Vapor Phase Catalytic Ammonia Removal (VPCAR) system. VPCAR is a spacecraft water recycling system designed by NASA and constructed by Water Reuse Technology Inc. The technology has been identified by NASA to be the next generation water recycling system [1]. It is designed specifically for a Mars transit vehicle mission. This paper provides a description of the process and an evaluation of the performance of the new system. The equivalent system mass (ESM) is calculated and compared to the existing state-of-the art. A description of the contracting mechanism used to construct the new system is also provided.
Technical Paper

The CELSS Antarctic Analog Project: A Validation of CELSS Methodologies at the South Pole Station

1993-07-01
932245
The CELSS Antarctic Analog Project (CAAP) is a joint NSF and NASA project tor the development, deployment and operation of CELSS technologies at the Amundsen-Scott South Pole Station. CAAP is implemented through the joint NSF/NASA Antarctic Space Analog Program (ASAP), initiated to support the pursuit of future NASA missions and to promote the transfer of space technologies to the NSF. As a joint endeavor, the CAAP represents an example of a working dual agency cooperative project. NASA goals are operational testing of CELSS technologies and the conduct of scientific study to facilitate technology selection, system design and methods development required for the operation of a CELSS. Although not fully closed, food production, water purification, and waste recycle and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, and minimize environmental impacts associated with human presence on the polar plateau.
Technical Paper

Testing of the Multi-Fluid Evaporator Prototype

2008-06-29
2008-01-2166
Hamilton Sundstrand has developed a scalable evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It was designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. This system combines the functions of the Space Shuttle flash evaporator and ammonia boiler into a single compact package with improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. A full-scale unit uses multiple core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A four-core MFE prototype was built in 2007.
Technical Paper

Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2007-07-09
2007-01-3156
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are all controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft. However, more data was needed on the operational characteristics of the package in a simulated spacecraft environment. A unit was therefore tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the last third of 2006. Tests were run at a variety of cabin temperatures and with a range of operating conditions varying cycle time, vacuum pressure, air flow rate, and crew activity levels.
Technical Paper

Summary of the High Ice Water Content (HIWC) RADAR Flight Campaigns

2019-06-10
2019-01-2027
NASA and the FAA conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding of high ice water content (HIWC) and develop onboard weather radar processing techniques to detect regions of HIWC ahead of an aircraft to enable tactical avoidance of the potentially hazardous conditions. Both HIWC RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory equipped with a Honeywell RDR-4000 weather radar and in-situ microphysical instruments to characterize the ice crystal clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results. The first campaign was conducted in August 2015 with a base of operations in Ft. Lauderdale, Florida.
Technical Paper

Steady-State System Mass Balance for the BIO-Plex

1998-07-13
981747
A steady-state system mass balance calculation was performed to investigate design issues regarding the storage and/or processing of solid waste. In the initial stages of BIO-Plex, only a certain percentage of the food requirement will be satisfied through crop growth. Since some food will be supplied to the system, an equivalent amount of waste will accumulate somewhere in the system. It is a system design choice as to where the mass should accumulate in the system. Here we consider two approaches. One is to let solid waste accumulate in order to reduce the amount of material processing that is needed. The second is to process all of the solid waste to reduce solid waste storage and then either resupply oxygen or add physical/chemical (P/C) processors to recover oxygen from the excess carbon dioxide and water that is produced by the solid waste processor.
Technical Paper

Starship Life Support

2009-07-12
2009-01-2466
The design and mass cost of a starship and its life support system are investigated. The mission plan for a multigenerationai interstellar voyage to colonize a new planet is used to describe the starship design, including the crew habitat, accommodations, and life support. Cost is reduced if a small crew travels slowly and lands with minimal equipment. The first human interstellar colonization voyage will probably travel about 10 light years and last hundreds of years. The required travel velocity is achievable by nuclear propulsion using near future technology. To minimize mission mass, the entire starship would not decelerate at the destination. Only small descent vehicles would land on the destination planet. The most mass efficient colonization program would use colonizing crews of only a few dozen. Highly reliable life support can be achieved by providing selected spares and full replacement systems.
Technical Paper

Space Simulation in the Neutral Buoyancy Test Facility

1993-09-01
932554
Various methods have been used to simulate reduced gravity environments for space systems research and development. Neutral buoyancy has been the most universally used simulation of zero-g. This paper describes the facilities, personnel and experimental work that are associated with the Neutral Buoyancy Test Facility (NBTF) at NASA Ames Research Center (ARC). This facility provides a unique underwater environment for the researcher to simulate reduced gravity activities and evaluate the performance of space-related equipment. The NBTF's small size gives it several advantages over larger water facilities. First, a smaller crew ensures a lower overhead. Second, the facility is used for research purposes only, eliminating any scheduling conflicts with astronaut training. Lastly, the small volume of water allows the researcher to more easily vary the water temperature. This feature is ideal for investigations of astronaut thermal comfort and regulation.
Technical Paper

SAWD II Subsystem Integration into the Variable Pressure Growth Chamber: A Systems Level Analysis Using CASE/A

1994-06-01
941451
The NASA Johnson Space Center has plans to integrate a Solid Amine Water Desorbed (SAWD II) carbon dioxide removal subsystem into the Variable Pressure Growth Chamber (VPGC). The SAWD II subsystem will be used to remove any excess carbon dioxide (CO2) input into the VPGC which is not assimilated by the plants growing in the chamber. An analysis of the integrated VPGC-SAWD II system was performed using a mathematical model of the system implemented in the Computer-Aided System Engineering and Analysis (CASE/A) package. The analysis consisted of an evaluation of the SAWD II subsystem configuration within the VPGC, the planned operations for the subsystem, and the overall performance of the subsystem and other VPGC subsystems. Based on the model runs, recommendations were made concerning the SAWD II subsystem configuration and operations, and the chambers' automatic CO2 injection control subsystem.
Technical Paper

Revised Solid Waste Model for Mars Reference Missions

2002-07-15
2002-01-2522
A key component of an Advanced Life Support (ALS) system is the solid waste handling system. One of the most important data sets for determining what solid waste handling technologies are needed is a solid waste model. A preliminary solid waste model based on a six-person crew was developed prior to the 2000 Solid Waste Processing and Resource Recovery (SWPRR) workshop. After the workshop, comments from the ALS community helped refine the model. Refinements included better estimates of both inedible plant biomass and packaging materials. Estimates for Extravehicular Mobility Unit (EMU) waste, water processor brine solution, as well as the water contents for various solid wastes were included in the model refinement efforts. The wastes were re-categorized and the dry wastes were separated from wet wastes. This paper details the revised model as of the end of 2001. The packaging materials, as well as the biomass wastes, vary significantly between different proposed Mars missions.
X