Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Understanding the Octane Appetite of Modern Vehicles

2016-04-05
2016-01-0834
Octane appetite of modern engines has changed as engine designs have evolved to meet performance, emissions, fuel economy and other demands. The octane appetite of seven modern vehicles was studied in accordance with the octane index equation OI=RON-KS, where K is an operating condition specific constant and S is the fuel sensitivity (RONMON). Engines with a displacement of 2.0L and below and different combinations of boosting, fuel injection, and compression ratios were tested using a decorrelated RONMON matrix of eight fuels. Power and acceleration performance were used to determine the K values for corresponding operating points. Previous studies have shown that vehicles manufactured up to 20 years ago mostly exhibited negative K values and the fuels with higher RON and higher sensitivity tended to perform better.
Technical Paper

Particulate Mass Reduction and Clean-up of DISI Injector Deposits via Novel Fuels Additive Technology

2014-10-13
2014-01-2847
Particulate mass (PM) emissions from DISI engines can be reduced via fuels additive technology that facilitates injector deposit clean-up. A significant drawback of DISI engines is that they can have higher particulate matter emissions than PFI gasoline engines. Soot formation in general is dependent on the air-fuel ratio, combustion chamber temperature and the chemical structure and thermo-physical properties of the fuel. In this regard, PM emissions and DISI injector deposit clean-up were studied in three identical high sales-volume vehicles. The tests compared the effects of a fuel (Fuel A) containing a market generic additive at lowest additive concentration (LAC) against a fuel formulated with a novel additive technology (Fuel B). The fuels compared had an anti-knock index value of 87 containing up to 10% ethanol. The vehicles were run on Fuel A for 20,000 miles followed by 5,000 miles on Fuel B using a chassis dynamometer.
Technical Paper

Octane Response of Premium-Recommended Vehicles

2013-04-08
2013-01-0883
A higher octane quality fuel used in premium-recommended vehicles has the potential for delivering better acceleration and power. Octane number is a standard measure for the anti-knock quality of a gasoline fuel. A higher octane number fuel can withstand more compression before detonation (or knock). Higher compression ratios directly correlate with engine power and thermodynamic efficiency. Hence engines that are designed for higher octane or premium grade fuels should typically develop higher power by extracting more from the calorific value of the fuel. However, in the case of premium-recommended vehicle models that are designed to run even on lower octane fuels, the extent of performance benefits of using premium grade higher octane fuels can be deciphered via vehicle testing. In this regard, two gasoline fuels with anti-knock index values (AKI) of 87 and 91 respectively were compared in five premium-recommended vehicles for acceleration and power benefits.
X