Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Regenerative Active Suspension on Rough Terrain Vehicles

Progress on the development of active suspension for improving mobility of rough terrain vehicles is being hindered by the potentially high energy requirements. A unique regenerative active suspension system has been conceived and is being developed to provide active suspension with very low energy requirements. Regenerative active suspension consists of multiple variable displacement pumps, each controlling flow to and from hydro-pneumatic struts to control a vehicle's low frequency body motions. When fluid is returned from a strut to a pump, energy is recovered or “regenerated” so that the total energy requirement is very low. This paper presents the results of a study showing the potential of the regenerative active suspension system to improve vehicle control and ride comfort of rough terrain vehicles enhancing mobility while requiring very little additional energy.
Technical Paper

Hydraulic System Configurations for Improved Efficiency

The design and selection of a hydraulic system for a particular machine is based upon a variety of factors which include: functionality, performance, safety, cost, reliability, duty cycle, component availability, and efficiency. With higher fuel costs and requirements to reduce engine exhaust emissions, new hydraulic system configurations should be considered. Traditional hydraulic systems conssume an excessive amount of energy due to metering losses. A single pump usually supplies flow to multiple functions, with differing flow and pressure requirements resulting in excessive metering losses. The energy of mass and inertial loads is usually dissipated by metering losses. Opportunities exist for reducing metering losses by the use of multiple pumps and by using hydrostatic control of individual functions. Hydrostatic control also allows for energy recovery when used in conjunction with an energy storage system.
Technical Paper

A Regenerative Active Suspension System

Active automotive suspension systems have been under development for a number of years with recent introductions of various versions. A suspension system can be considered “active” when an outside power source is used to alter its characteristics, and these systems can be placed into one of three (3) different categories: semi-active damping, fully active, and low frequency active. A regenerative pump concept can minimize the power requirement for the low frequency active system. It utilizes four (4) independent variable displacement pump/motor combinations on a common shaft to actuate each individual suspension unit. This paper overviews the system configuration, describes the power and energy-saving features of the system, and discusses possible pump configurations and control strategies.