Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Catalytic Converter Mat Material Durability Measurement Under Controlled Thermal and Vibration Environments

2000-03-06
2000-01-0221
To aid in the catalytic converter design and development process, a test apparatus was designed and built which will allow comparative evaluation of the durability of candidate mat materials under highly controlled thermal and vibration environments. The apparatus directly controls relative shear deflection between the substrate and can to impose known levels of mat material strain while recording the transmitted shear force across the mat material. Substrate and can temperatures are controlled at constant levels using a resistive thermal exposure (RTE) technique. Mat material fatigue after several million cycles is evident by a substantial decrease in the transmitted force. A fragility test was found to be an excellent method to quickly compare candidate materials to be used for a specific application. Examples of test results from several materials are given to show the utility of the mat material evaluation technique.
Technical Paper

Catalytic Converter Design from Mat Material Coupon Fragility Data

2004-03-08
2004-01-1760
Automotive catalytic converters must provide a very high level of mechanical and thermal durability to maintain performance during their 100,000 to 150,000 mile life expectancy. The work reported herein characterizes the converter as a base (can) excited spring (mat material) supported mass (substrate). A mat material coupon test apparatus was developed for the purpose of providing parameter data for the converter model in the form of stiffness and material loss factor data as a function of shear deflection across the mat. An intumescent mat material was chosen and its dynamic properties evaluated for a range of converter operating parameters. The mat material response properties were placed into a mat material database as a function of gap bulk density, substrate temperature, and temperature gradient across the mat.
X