Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Evaluation of Emerging Technologies on a 1.6 L Turbocharged GDI Engine

2018-04-03
2018-01-1423
Low-pressure loop exhaust gas recirculation (LP- EGR) combined with higher compression ratio, is a technology package that has been a focus of research to increase engine thermal efficiency of downsized, turbocharged gasoline direct injection (GDI) engines. Research shows that the addition of LP-EGR reduces the propensity to knock that is experienced at higher compression ratios [1]. To investigate the interaction and compatibility between increased compression ratio and LP-EGR, a 1.6 L Turbocharged GDI engine was modified to run with LP-EGR at a higher compression ratio (12:1 versus 10.5:1) via a piston change. This paper presents the results of the baseline testing on an engine run with a prototype controller and initially tuned to mimic an original equipment manufacturer (OEM) baseline control strategy running on premium fuel (92.8 anti-knock index).
Journal Article

Benchmarking a 2018 Toyota Camry 2.5-Liter Atkinson Cycle Engine with Cooled-EGR

2019-04-02
2019-01-0249
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty automotive technologies in support of regulatory and compliance programs, a 2018 Toyota Camry A25A-FKS 4-cylinder, 2.5-liter, naturally aspirated, Atkinson Cycle engine with cooled exhaust gas recirculation (cEGR) was benchmarked. The engine was tested on an engine dynamometer with and without its 8-speed automatic transmission, and with the engine wiring harness tethered to a complete vehicle parked outside of the test cell. Engine and transmission torque, fuel flow, key engine temperatures and pressures, onboard diagnostics (OBD) data, and Controller Area Network (CAN) bus data were recorded. This paper documents the test results under idle, low, medium, and high load engine operation. Motoring torque, wide open throttle (WOT) torque and fuel consumption are measured during transient operation using both EPA Tier 2 and Tier 3 test fuels.
X