Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Regulated and Unregulated Exhaust Emissions Comparison for Three Tier II Non-Road Diesel Engines Operating on Ethanol-Diesel Blends

2005-05-11
2005-01-2193
Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent).
Technical Paper

Heavy-Duty Diesel Hydrocarbon Speciation:Key Issues and Technological Challenges

1993-10-01
932853
Development of methodology for diesel hydrocarbon speciation of C12-C22 compounds and the application of that methodology to determine total ozone forming potential of diesel exhaust emissions is an extremely complicated task. Methodology has already been developed for speciating C1-C12 exhaust emissions from engines and vehicles fueled with gasoline, diesel, and alternate fuels. However, very little or no information is available for exhaust speciation of C12-C22 compounds as sampling and analytical constraints make the collection and analysis of the higher molecular weight compounds extremely challenging. Key issues related to the definition of “hydrocarbons” also need to be addressed prior to promulgation of future reactivity-based legislation for diesels (e.g., Which exhaust hydrocarbon compounds actually exist in gas-phase and participate in atmospheric ozone formation?).
Journal Article

Development of a Synthetic Diesel Exhaust

2008-04-14
2008-01-0067
A two-phase study was performed to establish a standard diesel exhaust composition which could be used in the future development of light-duty diesel exhaust aftertreatment. In the first phase, a literature review created a database of diesel engine-out emissions. The database consisted chiefly of data from heavy-duty diesel engines; therefore, the need for an emission testing program for light- and medium-duty engines was identified. A second phase was conducted to provide additional light-duty vehicle emissions data from current technology vehicles. Engine-out diesel exhaust from four 2004 model light-duty vehicles with a variety of engine displacements was collected and analyzed. Each vehicle was evaluated using five steady-state engine operating conditions and two transient test cycles (the Federal Test Procedure and the US06). Regulated emissions were measured along with speciation of both volatile and semi-volatile components of the hydrocarbons.
Journal Article

Catalytic Formulation for NO2 Suppression and Control

2008-06-23
2008-01-1548
To counter the adverse impact on the formation of harmful unregulated emissions such as nitro-polycyclic aromatic hydrocarbons (NPAH), catalyst companies and researchers have been developing catalytic coatings that have the capability of suppressing the formation of NO2. NO2 is formed at low exhaust temperatures with potentially greater concentrations at part load engine operation. Haldor Topsoe, a catalyst company from Denmark, developed such a catalytic coating for DPFs. A sample was provided to Southwest Research Institute (SwRI) to conduct this research with a view of potentially improving NO2-suppressing formulations in the future. The Haldor Topsoe diesel particulate filter (DPF) with its novel coating was tested together with three other DPFs and the results confirmed the capability of this DPF to suppress the formation of NO2. This characteristic was apparent in all five engine test modes selected to cover the full engine operating range.
X