Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Verification of a Gaseous Portable Emissions Measurement System with a Laboratory System Using the Code of Federal Regulations Part 1065

2010-04-12
2010-01-1069
This paper summarizes the validation testing of the Horiba Instruments OBS-2200 gaseous portable emissions measurement system (PEMS) for in-use compliance testing per Title 40 of the Code of Federal Regulations (CFR) Part 1065.920 (Section 1065.920). The qualification process included analyzer verifications as well as engine testing on a model-year 2007 heavy-duty diesel engine produced by Volvo Powertrain. The measurements of brake-specific emissions with the OBS-2200 were compared to those of a CFR Part 1065-compliant CVS test cell over a series of not-to-exceed (NTE) events. The OBS-2200 passed all linearity verifications and analyzer checks required of PEMS. Engine test validation was achieved for all three regulated gaseous emissions (CO, NMHC, and NOX) per 40 CFR Part 1065.920(b)(5)(i), which requires a minimum of 91 percent of the measurement allowance adjusted deltas to be less than or equal to zero.
Technical Paper

Vegetable Oils as Alternative Diesel Fuels: Degradation of Pure Triglycerides During the Precombustion Phase in a Reactor Simulating a Diesel Engine

1992-02-01
920194
Vegetable oils are candidates for alternative fuels in diesel engines. These oils, such as soybean, sunflower, rapeseed, cottonseed, and peanut, consist of various triglycerides. The chemistry of the degradation of vegetable oils when used as alternate diesel fuels thus corresponds to that of triglycerides. To study the chemistry occurring during the precombustion phase of a vegetable oil injected into a diesel engine, a reactor simulating a diesel engine was constructed. Pure triglycerides were injected into the reactor in order to determine differences in the precombustion behavior of the various triglycerides. The reactor allowed motion pictures to be prepared of the injection event as the important reaction parameters, such as pressure, temperature, and atmosphere were varied. Furthermore, samples of the degradation products of precombusted triglycerides were collected and analyzed (gas chromatography / mass spectrometry).
Technical Paper

Use of Alcohol-in-Diesel Fuel Emulsions and Solutions in a Medium-Speed Diesel Engine

1981-02-01
810254
The use of alcohol as a supplemental fuel for a medium-speed diesel engine was investigated using a two-cylinder, two-stroke test engine. Both stabilized and unstabilized emulsions of methanol-in-diesel fuel and ethanol-in-diesel fuel were tested. Also, anhydrous ethanol/diesel fuel solutions were evaluated. Maximum alcohol content of the emulsions and solutions was limited by engine knocking due to a reduction in fuel cetane number. Engine power and thermal efficiency were slightly below baseline diesel fuel levels in the high and mid-speed ranges, but were somewhat improved at low speeds during tests of the unstabilized emulsions and the ethanol solutions. However, thermal efficiency of the stabilized emulsions fell below baseline levels at virtually all conditions.
Technical Paper

Unregulated Exhaust Emissions from Alternate Diesel Combustion Modes

2006-10-16
2006-01-3307
Regulated and unregulated exhaust emissions (individual hydrocarbons, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), and nitro-polynuclear aromatic hydrocarbons (NPAH)) were characterized for the following alternate diesel combustion modes: premixed charge compression ignition (PCCI), and low-temperature combustion (LTC). PCCI and LTC were studied on a PSA light-duty high-speed diesel engine. Engine-out emissions of carbonyl compounds were significantly increased for all LTC modes and for PCCI-Lean conditions as compared to diesel operation; however, PCCI-Rich produced much lower carbonyl emissions than diesel operations. For PAH compounds, emissions were found to be substantially increased over baseline diesel operation for LTC-Lean, LTC-Rich, and PCCI-Lean conditions. PCCI-Rich operation, however, gave PAH emission rates comparable to baseline diesel operation.
Technical Paper

US 2010 Emissions Capable Camless Heavy-Duty On-Highway Natural Gas Engine

2007-07-23
2007-01-1930
The goal of this project was to demonstrate a low emissions, high efficiency heavy-duty on-highway natural gas engine. The emissions targets for this project are to demonstrate US 2010 emissions standards on the 13-mode steady state test. To meet this goal, a chemically correct combustion (stoichiometric) natural gas engine with exhaust gas recirculation (EGR) and a three way catalyst (TWC) was developed. In addition, a Sturman Industries, Inc. camless Hydraulic Valve Actuation (HVA) system was used to improve efficiency. A Volvo 11 liter diesel engine was converted to operate as a stoichiometric natural gas engine. Operating a natural gas engine with stoichiometric combustion allows for the effective use of a TWC, which can simultaneously oxidize hydrocarbons and carbon monoxide and reduce NOx. High conversion efficiencies are possible through proper control of air-fuel ratio.
Technical Paper

U.S. Army Investigation of Diesel Exhaust Emissions Using JP-8 Fuels with Varying Sulfur Content

1996-10-01
961981
Comparative emission measurements were made in two dynamometer-based diesel engines using protocol specified by the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). A single JP-8 fuel with a sulfur level of 0.06 weight percent (wt%) was adjusted to sulfur levels of 0.11 and 0.26 wt%. The emission characteristics of the three fuels were compared to the 1994 EPA certification low-sulfur diesel fuel (sulfur level equal to 0.035 wt%) in the Detroit Diesel Corporation (DDC) 1991 prototype Series 60 diesel engine and in the General Motors (GM) 6.2L diesel engine. Comparisons were made using the hot-start transient portion of the heavy-duty diesel engine Federal Test Procedure. Results from the Army study show that the gaseous emissions for the DDC Series 60 engine using kerosene-based JP-8 fuel are equivalent to values obtained with the 0.035 wt% sulfur EPA certification diesel fuel.
Technical Paper

Three-Way Catalyst Technology for Off-Road Equipment Engines

1999-09-28
1999-01-3283
A project was conducted by Southwest Research Institute on behalf of the California Air Resources Board and the South Coast Air Quality Management District to demonstrate the technical feasibility of utilizing closed-loop three-way catalyst technology in off-road equipment applications. Five representative engines were selected, and baseline emission-tested using both gasoline and LPG. Emission reduction systems, employing three-way catalyst technology with electronic fuel control, were designed and installed on two of the engines. The engines were then installed in a fork lift and a pump system, and limited durability testing was performed. Results showed that low emission levels, easily meeting CARB's newly adopted large spark-ignited engine emission standards, could be achieved.
Technical Paper

The Winch-Dozer - A Tool for Area Mine Spoil Leveling

1977-02-01
770550
A new approach to reclaiming the spoil areas produced by area-type mining operations has been developed. This system uses a machine known as a winch-dozer, consisting of a pair of large back-to-back buckets which are drawn by cable across spoil piles, moving back and forth between a “tailblock” anchor and a “drawworks” winch unit developed as an attachment to a large crawler tractor. The system is expected to reduce the cost of reclamation leveling by 40-50%. The system permits more effective power utilization due to the blade system's light weight, induces caving of spoil banks, and permits moving spoil in both directions of blade travel.
Technical Paper

The Use of Radioactive Tracer Technology to Measure Real-Time Wear in Engines and Other Mechanical Systems

2007-04-16
2007-01-1437
Radioactive tracer technology (RATT™) is an important tool for measuring real-time wear in operating engines and other mechanical systems. The use of this technology provides important wear information that is not available by other, more conventional wear measurement methods. The technology has advanced to the point where several components can be interrogated simultaneously, and new methods have extended the method to materials that are normally not amenable to radioactive tracer evaluation. In addition, sensitivity has increased so that the onset of wear can be detected long before practical with non-tracer methods. This improves the ability to measure and determine cause and effect relationships, thus providing a better understanding of wear responses to specific operating conditions and to changes in operating conditions. This paper reviews the radioactive tracer process and recent improvements that have extended its reach in both automotive and non-automotive applications.
Technical Paper

The Texas Diesel Fuels Project, Part 1: Development of TxDOT-Specific Test Cycles with Emphasis on a “Route” Technique for Comparing Fuel/Water Emulsions and Conventional Diesel Fuels

2004-03-08
2004-01-0090
The Texas Department of Transportation (TxDOT) began using an emulsified diesel fuel in July 2002. They initiated a simultaneous study of the effectiveness of this fuel in comparison to 2D on-road diesel fuel, which they use in both their on-road and off-road equipment. The study also incorporated analyses for the fleet operated by the Associated General Contractors (AGC) in the Houston area. Some members of AGC use 2D off-road diesel fuel in their equipment. The study included comparisons of fuel economy and emissions for the emulsified fuel relative to the conventional diesel fuels. Cycles that are known to be representative of the typical operations for TxDOT and AGC equipment were required for use in this study. Four test cycles were developed from data logged on equipment during normal service: 1) the TxDOT Telescoping Boom Excavator Cycle, 2) the AGC Wheeled Loader Cycle, 3) the TxDOT Single-Axle Dump Truck Cycle, and 4) the TxDOT Tandem-Axle Dump Truck Cycle.
Technical Paper

The Stratified Charge Glowplug Ignition (SCGI) Engine with Natural Gas Fuel

1991-09-01
911767
The objective was to demonstrate the feasibility of operating a natural gas two-stroke engine using glow plug ignition with very lean mixtures. Based on the results obtained, the term SCGI (stratified charge glow plug ignition) was coined to describe the engine. An JLO two-stroke diesel engine was converted first to a natural gas fueled spark-ignited engine for the baseline tests, and then to an SCGI engine. The SCGI engine used a gas operated valve in the cylinder head to admit the natural gas fuel, and a glow plug was used as a means to initiate the combustion. The engine was successfully run, but was found to be sensitive to various conditions such as the glow plug temperature. The engine would run very lean, to an overall equivalence ratio of 0.33, offering the potential of good fuel economy and low NOx emissions.
Journal Article

The Role of EGR in PM Emissions from Gasoline Engines

2010-04-12
2010-01-0353
A dilute spark-ignited engine concept has been developed as a potential low cost competitor to diesel engines by Southwest Research Institute (SwRI), with a goal of diesel-like efficiency and torque for light- and medium-duty applications and low-cost aftertreatment. The targeted aftertreatment method is a traditional three-way catalyst, which offers both an efficiency and cost advantage over typical diesel aftertreatment systems. High levels of exhaust gas recirculation (EGR) have been realized using advanced ignition systems and improved combustion, with significant improvements in emissions, efficiency, and torque resulting from using high levels of EGR. The primary motivation for this work was to understand the impact high levels of EGR would have on particulate matter (PM) formation in a port fuel injected (PFI) engine. While there are no proposed regulations for PFI engine PM levels, the potential exists for future regulations, both on a size and mass basis.
Technical Paper

The Heavy Duty Gasoline Engine - A Multi-Cylinder Study of a High Efficiency, Low Emission Technology

2005-04-11
2005-01-1135
SwRI has developed a new technology concept involving the use of high EGR rates coupled with a high-energy ignition system in a gasoline engine to improve fuel economy and emissions. Based on a single-cylinder study [1], this study extends the concept of a high compression ratio gasoline engine with EGR rates > 30% and a high-energy ignition system to a multi-cylinder engine. A 2000 MY Isuzu Duramax 6.6 L 8-cylinder engine was converted to run on gasoline with a diesel pilot ignition system. The engine was run at two compression ratios, 17.5:1 and 12.5:1 and with two different EGR systems - a low-pressure loop and a high pressure loop. A high cetane number (CN) diesel fuel (CN=76) was used as the ignition source and two different octane number (ON) gasolines were investigated - a pump grade 91 ON ((R+M)/2) and a 103 ON ((R+M)/2) racing fuel.
Technical Paper

The Effect of a Turbocharger Clearance Control Coating on the Performance and Emissions of a 2-Stroke Diesel Engine

1999-10-25
1999-01-3665
Extensive efforts are being made to improve emissions from 2-stroke diesel engines. These improvements are primarily directed towards older model year engines with relatively high emissions compared with modern diesel engines. While most researchers focus their attention on engine design changes that promise substantial emission improvements, this work dealt with the turbocharger characteristics, especially as related to using internal coatings on both the compressor and turbine housings. Two identical turbochargers were tested on a Detroit Diesel 6V-92TA engine. One of the two turbochargers was left in its production configuration while the other was coated with a clearance control coating on the inside of the compressor and turbine housings. This coating led to a significant reduction in the tip clearance of both the compressor and turbine wheels.
Technical Paper

The Effect of Water on Soot Formation Chemistry

2005-10-24
2005-01-3850
A combined, experimental and numerical program is presented. This work summarizes an internal research effort conducted at Southwest Research Institute. Meeting new, stringent emissions regulations for diesel engines requires a way to reduce NOx and soot emissions. Most emissions reduction strategies reduce one pollutant while increasing the other. Water injection is one of the few promising emissions reduction techniques with the potential to simultaneously reduce soot and NOx in diesel engines. While it is widely accepted that water reduces NOx via a thermal effect, the mechanisms behind the reduction of soot are not well understood. The water could reduce the soot via physical, thermal, or chemical effects. To aid in developing water injection strategies, this project's goal was to determine how water enters the soot formation chemistry.
Technical Paper

The Effect of Sparkplug Design on Initial Flame Kernel Development and Sparkplug Performance

2006-04-03
2006-01-0224
Tests were conducted on a variety of commercially available spark plugs to determine the influence of igniter design on initial kernel formation and overall performance. Flame kernel formation was investigated using high-speed schlieren visualization. The flame growth rate was quantified using the area of the burned gas region. The results showed that kernel growth rate was heavily influenced by electrode geometry and configuration. The igniters were also tested in a bomb calorimeter to determine the levels of supplied and delivered energy. The typical ratio of supplied to delivered energy was 20% and igniters with a higher internal resistance delivered more energy and had faster kernel formation rates. The exception was plugs with large amounts of conductive mass near the electrodes, which had very slow kernel formation rates despite relatively high delivered energy levels.
Technical Paper

The Effect of Fuel Injection on the Velocity Fluctuations in the Bowl of a DISI Engine

2005-05-11
2005-01-2102
Swirl plane Particle Image Velocimetry (PIV) measurements were performed in a single-cylinder optically accessible gasoline direct injection (DISI) engine using a borescope introduced through the spark plug hole. This allowed the use of a contoured piston and the visualization of the flow field in and around the piston bowl. The manifold absolute pressure (MAP) was fixed at 90 kPa and the engine speed was varied in increments of 250 rpm from 750 rpm to 2000 rpm. Images were taken from 270° to 320° bTDC of compression at 10° intervals to study the evolution of the velocity fluctuations. Measurements were performed with and without fuel injection to study its effect on the in-cylinder flow fields. Fuel was injected at 10 MPa and 5 MPa. The 2-D spatial mean velocities of individual flow fields and their decompositions were averaged over 100 cycles and used to investigate the effects of engine speed and image timing on the flow field.
Technical Paper

The Effect of Biodiesel Fuels on Transient Emissions from Modern Diesel Engines, Part II Unregulated Emissions and Chemical Characterization

2000-06-19
2000-01-1968
The use of biodiesel fuels derived from vegetable oils or animal fats as a substitute for conventional petroleum fuel in diesel engines has received increased attention. This interest is based on a number of properties of biodiesel including the fact that it is produced from a renewable resource, its biodegradability, and its potential beneficial effects on exhaust emissions. As part of Tier 1 compliance requirements for EPA's Fuel Registration Program, a detailed chemical characterization of the transient exhaust emissions from three modern diesel engines was performed, both with and without an oxidation catalyst. This characterization included several forms of hydrocarbon speciation, as well as measurement of aldehydes, ketones, and alcohols. In addition, both particle-phase and semivolatile-phase PAH and nitro-PAH compounds were measured. Unregulated emissions were characterized with neat biodiesel and with a blend of biodiesel and conventional diesel fuel.
Technical Paper

The Effect of Biodiesel Fuels on Transient Emissions from Modern Diesel Engines, Part I Regulated Emissions and Performance

2000-06-19
2000-01-1967
The use of biodiesel fuels derived from vegetable oils or animal fats as a substitute for conventional petroleum fuel in diesel engines has received increased attention. This interest is based on a number of properties of biodiesel including the fact that it is produced from a renewable resource, its biodegradability, and its potential beneficial effects on exhaust emissions. Transient exhaust emissions from three modern diesel engines were measured during this study, both with and without an oxidation catalyst. Emissions were characterized with neat biodiesel and with a blend of biodiesel and conventional diesel fuel. Regulated emissions and performance data are presented in this paper, while the results of a detailed chemical characterization of exhaust emissions are presented in a companion paper. The use of biodiesel resulted in lower emissions of unburned hydrocarbons, carbon monoxide, and particulate matter, with some increase in emissions of oxides of nitrogen on some engines.
Technical Paper

The Development of the Pumpless Gas Engine Concept

1970-02-01
700073
The major events in the development of a “pumpless” gas engine concept are related. The immediate objective of the subject program was to develop a combustion system for natural gas fueled engines which, when compared with conventional gas engines, would be operationally simpler and easier to maintain with no appreciable penalty in specific fuel consumption. The pumpless gas principle was successfully demonstrated on a single-cylinder, 2-cycle engine. The concept was then extended, with the aid of combustion photography, to a single-cylinder, 4-cycle laboratory engine. The feasibility of the concept was further demonstrated by the conversion of a commercially available 4-cycle, 4-cyl diesel engine.
X