Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Virtual Cylinder Pressure Sensor (VCPS) with Individual Variable-Oriented Independent Estimators

2005-04-11
2005-01-0059
Tremendous amount of useful information can be extracted from the cylinder pressure signal for engine combustion control. However, the physical cylinder pressure sensors are undesirably expensive and their health need to be monitored for fault diagnostic purpose as well. This paper presents the results of the development of a virtual cylinder pressure sensor (VCPS) with individual variable-oriented independent estimators. Two neural network-based independent cylinder pressure related variable estimators were developed and verified at steady state. The results show that these models can predict the variables correctly compared with the extracted variables from the measured physical cylinder pressure sensor signal. Good generalization capabilities of the developed models are observed in the sense that the models work well not only for the training data set but also for the new inputs that they have never been exposed to before.
Technical Paper

V2X Communication Protocols to Enable EV Battery Capacity Measurement: A Review

2024-04-09
2024-01-2168
The US EPA and the California Air Resources Board (CARB) require electric vehicle range to be determined according to the Society of Automotive Engineers (SAE) surface vehicle recommended practice J1634 - Battery Electric Vehicle Energy Consumption and Range Test Procedure. In the 2021 revision of the SAE J1634, the Short Multi-Cycle Test (SMCT) was introduced. The proposed testing protocol eases the chassis dynamometer test burden by performing a 2.1-hour drive cycle on the dynamometer, followed by discharging the remaining battery energy into a battery cycler to determine the Useable Battery Energy (UBE). Opting for a cycler-based discharge is financially advantageous due to the extended operating time required to fully deplete a 70-100kWh battery commonly found in Battery Electric Vehicles (BEVs).
Technical Paper

Utilizing Multiple Combustion Modes to Increase Efficiency and Achieve Full Load Dual-Fuel Operation in a Heavy-Duty Engine

2019-04-02
2019-01-1157
Reactivity Controlled Compression Ignition (RCCI) natural gas/diesel dual-fuel combustion has been shown to achieve high thermal efficiency with low NOX and PM emissions, but has traditionally been limited to low to medium loads. High BMEP operation typically requires high substitution rates (i.e., >90% NG), which can lead to high cylinder pressure, pressure rise rates, knock, and combustion loss. In previous studies, compression ratio was decreased to achieve higher load operation, but thermal efficiency was sacrificed. For this study, a multi-cylinder heavy-duty engine that has been modified for dual-fuel operation (diesel direct-injection and natural gas (NG) fumigated into the intake stream) was used to explore RCCI and other dual-fuel combustion modes at high compression ratio, while maintaining stock lug curve capability (i.e., extending dual-fuel operation to high loads where conventional diesel combustion traditionally had to be used).
Technical Paper

US 2010 Emissions Capable Camless Heavy-Duty On-Highway Natural Gas Engine

2007-07-23
2007-01-1930
The goal of this project was to demonstrate a low emissions, high efficiency heavy-duty on-highway natural gas engine. The emissions targets for this project are to demonstrate US 2010 emissions standards on the 13-mode steady state test. To meet this goal, a chemically correct combustion (stoichiometric) natural gas engine with exhaust gas recirculation (EGR) and a three way catalyst (TWC) was developed. In addition, a Sturman Industries, Inc. camless Hydraulic Valve Actuation (HVA) system was used to improve efficiency. A Volvo 11 liter diesel engine was converted to operate as a stoichiometric natural gas engine. Operating a natural gas engine with stoichiometric combustion allows for the effective use of a TWC, which can simultaneously oxidize hydrocarbons and carbon monoxide and reduce NOx. High conversion efficiencies are possible through proper control of air-fuel ratio.
Technical Paper

Three-Way Catalyst Technology for Off-Road Equipment Engines

1999-09-28
1999-01-3283
A project was conducted by Southwest Research Institute on behalf of the California Air Resources Board and the South Coast Air Quality Management District to demonstrate the technical feasibility of utilizing closed-loop three-way catalyst technology in off-road equipment applications. Five representative engines were selected, and baseline emission-tested using both gasoline and LPG. Emission reduction systems, employing three-way catalyst technology with electronic fuel control, were designed and installed on two of the engines. The engines were then installed in a fork lift and a pump system, and limited durability testing was performed. Results showed that low emission levels, easily meeting CARB's newly adopted large spark-ignited engine emission standards, could be achieved.
Technical Paper

The Winch-Dozer - A Tool for Area Mine Spoil Leveling

1977-02-01
770550
A new approach to reclaiming the spoil areas produced by area-type mining operations has been developed. This system uses a machine known as a winch-dozer, consisting of a pair of large back-to-back buckets which are drawn by cable across spoil piles, moving back and forth between a “tailblock” anchor and a “drawworks” winch unit developed as an attachment to a large crawler tractor. The system is expected to reduce the cost of reclamation leveling by 40-50%. The system permits more effective power utilization due to the blade system's light weight, induces caving of spoil banks, and permits moving spoil in both directions of blade travel.
Technical Paper

The Use of Radioactive Tracer Technology to Evaluate Engine Wear Under the Influences of Advanced Combustion System Operation and Lubricant Performance

2005-10-24
2005-01-3689
Radioactive tracer technology is an important tool for measuring component wear on a real-time basis and is especially useful in measuring engine wear as it is affected by combustion system operation and lubricant performance. Combustion system operation including the use of early and/or late fuel injection and EGR for emissions control can have a profound effect on aftertreatment contamination and engine reliability due to wear. Liner wear caused by localized fuel impingement can lead to excessive oil consumption and fuel dilution can cause excessive wear of rings and bearings. To facilitate typical wear measurement, the engine's compression rings and connecting rod bearings are initially exposed to thermal neutrons in a nuclear reactor to produce artificial radioisotopes that are separately characteristic of the ring and bearing wear surfaces.
Technical Paper

The Use of Radioactive Tracer Technology in Studying Lubricant Chemistry to Enhance Bearing and Ring Wear Control in an Operating Engine

1994-10-01
941982
Radioactive tracer technology (RAT) is an important tool in measuring component wear in an operating engine on a real-time basis. This paper will discuss the use of RAT to study and evaluate boundary lubricant and surfactant chemistries aimed at providing benefits in wear control. In particular, RAT was employed to study ring and bearing wear as a function of engine operating condition (speed, load, and temperature) and lubricant characteristics. Prior to testing, the engine's compression rings and connecting rod bearings were subjected to bulk thermal neutron bombardment in a nuclear reactor to produce artificial radioisotopes that were separately characteristic of the ring and bearing wear surfaces. The irradiated parts were installed in the test engine, after which testing to a specific test matrix was accomplished.
Technical Paper

The Texas Diesel Fuels Project, Part 1: Development of TxDOT-Specific Test Cycles with Emphasis on a “Route” Technique for Comparing Fuel/Water Emulsions and Conventional Diesel Fuels

2004-03-08
2004-01-0090
The Texas Department of Transportation (TxDOT) began using an emulsified diesel fuel in July 2002. They initiated a simultaneous study of the effectiveness of this fuel in comparison to 2D on-road diesel fuel, which they use in both their on-road and off-road equipment. The study also incorporated analyses for the fleet operated by the Associated General Contractors (AGC) in the Houston area. Some members of AGC use 2D off-road diesel fuel in their equipment. The study included comparisons of fuel economy and emissions for the emulsified fuel relative to the conventional diesel fuels. Cycles that are known to be representative of the typical operations for TxDOT and AGC equipment were required for use in this study. Four test cycles were developed from data logged on equipment during normal service: 1) the TxDOT Telescoping Boom Excavator Cycle, 2) the AGC Wheeled Loader Cycle, 3) the TxDOT Single-Axle Dump Truck Cycle, and 4) the TxDOT Tandem-Axle Dump Truck Cycle.
Technical Paper

The Stratified Charge Glowplug Ignition (SCGI) Engine with Natural Gas Fuel

1991-09-01
911767
The objective was to demonstrate the feasibility of operating a natural gas two-stroke engine using glow plug ignition with very lean mixtures. Based on the results obtained, the term SCGI (stratified charge glow plug ignition) was coined to describe the engine. An JLO two-stroke diesel engine was converted first to a natural gas fueled spark-ignited engine for the baseline tests, and then to an SCGI engine. The SCGI engine used a gas operated valve in the cylinder head to admit the natural gas fuel, and a glow plug was used as a means to initiate the combustion. The engine was successfully run, but was found to be sensitive to various conditions such as the glow plug temperature. The engine would run very lean, to an overall equivalence ratio of 0.33, offering the potential of good fuel economy and low NOx emissions.
Technical Paper

The New BAIC High Efficiency Turbocharged Engine with LPL-EGR

2017-10-08
2017-01-2414
The new Beijing Automotive Industry Corporation (BAIC) engine, an evolution of the 2.3L 4-cylinder turbocharged gasoline engine from Saab, was designed, built, and tested with close collaboration between BAIC Motor Powertrain Co., Ltd. and Southwest Research Institute (SwRI®). The upgraded engine was intended to achieve low fuel consumption and a good balance of high performance and compliance with Euro 6 emissions regulations. Low fuel consumption was achieved primarily through utilizing cooled low pressure loop exhaust gas recirculation (LPL-EGR) and dual independent cam phasers. Cooled LPL-EGR helped suppress engine knock and consequently allowed for increased compression ratio and improved thermal efficiency of the new engine. Dual independent cam phasers reduced engine pumping losses and helped increase low-speed torque. Additionally, the intake and exhaust systems were improved along with optimization of the combustion chamber design.
Journal Article

The Interaction between Fuel Anti-Knock Index and Reformation Ratio in an Engine Equipped with Dedicated EGR

2016-04-05
2016-01-0712
Experiments were performed on a small displacement (< 2 L), high compression ratio, 4 cylinder, port injected gasoline engine equipped with Dedicated EGR® (D-EGR®) technology using fuels with varying anti-knock properties. Gasolines with anti-knock indices of 84, 89 and 93 anti-knock index (AKI) were tested. The engine was operated at a constant nominal EGR rate of ∼25% while varying the reformation ratio in the dedicated cylinder from a ϕD-EGR = 1.0 - 1.4. Testing was conducted at selected engine speeds and constant torque while operating at knock limited spark advance on the three fuels. The change in combustion phasing as a function of the level of overfuelling in the dedicated cylinder was documented for all three fuels to determine the tradeoff between the reformation ratio required to achieve a certain knock resistance and the fuel octane rating.
Technical Paper

The Impact of Engine Operating Conditions on Reformate Production in a D-EGR Engine

2017-03-28
2017-01-0684
Dedicated EGR has shown promise for achieving high efficiency with low emissions [1]. For the present study, a 4-cylinder turbocharged GDI engine which was modified to a D-EGR configuration was used to investigate the impact of valve phasing and different injection strategies on the reformate production in the dedicated cylinder. Various levels of positive valve overlap were used in conjunction with different approaches for dedicated cylinder over fueling using PFI and DI fuel systems. Three speed-load combinations were studied, 2000 rpm 4 bar IMEPg, 2000 rpm 12 bar IMEPg, and 4000 rpm 12 bar IMEPg. The primary investigation was conducted to map out the dedicated cylinders' performance at the operating limits of intake and exhaust cam phasing. In this case, the limits were defined as conditions that yielded either no reformate benefit or led to instability in the dedicated cylinder.
Journal Article

The Impact of Cooled EGR on Peak Cylinder Pressure in a Turbocharged, Spark Ignited Engine

2015-04-14
2015-01-0744
The use of cooled EGR as a knock suppression tool is gaining more acceptance worldwide. As cooled EGR become more prevalent, some challenges are presented for engine designers. In this study, the impact of cooled EGR on peak cylinder pressure was evaluated. A 1.6 L, 4-cylinder engine was operated with and without cooled EGR at several operating conditions. The impact of adding cooled EGR to the engine on peak cylinder pressure was then evaluated with an attempt to separate the effect due to advanced combustion phasing from the effect of increased manifold pressure. The results show that cooled EGR's impact on peak cylinder pressure is primarily due to the knock suppression effect, with the result that an EGR rate of 25% leads to an almost 50% increase in peak cylinder pressure at a mid-load condition if the combustion phasing is advanced to Knock Limited Spark Advance (KLSA). When combustion phasing was held constant, increasing the EGR rate had almost no effect on PCP.
Journal Article

The Effects of Piston Crevices and Injection Strategy on Low-Speed Pre-Ignition in Boosted SI Engines

2012-04-16
2012-01-1148
The spark ignition (SI) engine has been known to exhibit several different abnormal combustion phenomena, such as knock or pre-ignition, which have been addressed with improved engine design or control schemes. However, in highly boosted SI engines, Low-Speed Pre-Ignition (LSPI), a pre-ignition event typically followed by heavy knock, has developed into a topic of major interest due to its potential for engine damage. Previous experiments associated increases in hydrocarbon emissions with the blowdown event of an LSPI cycle [1]. Also, the same experiments showed that there was a dependency of the LSPI activity on fuel and/or lubricant compositions [1]. Based on these findings it was hypothesized that accumulated hydrocarbons play a role in LSPI and are consumed during LSPI events. A potential source for accumulated HC is the top land piston crevice.
Technical Paper

The Effect of a Turbocharger Clearance Control Coating on the Performance and Emissions of a 2-Stroke Diesel Engine

1999-10-25
1999-01-3665
Extensive efforts are being made to improve emissions from 2-stroke diesel engines. These improvements are primarily directed towards older model year engines with relatively high emissions compared with modern diesel engines. While most researchers focus their attention on engine design changes that promise substantial emission improvements, this work dealt with the turbocharger characteristics, especially as related to using internal coatings on both the compressor and turbine housings. Two identical turbochargers were tested on a Detroit Diesel 6V-92TA engine. One of the two turbochargers was left in its production configuration while the other was coated with a clearance control coating on the inside of the compressor and turbine housings. This coating led to a significant reduction in the tip clearance of both the compressor and turbine wheels.
Technical Paper

The Effect of In-Cylinder Wall Wetting Location on the HC Emissions from SI Engines

1999-03-01
1999-01-0502
The effect of combustion chamber wall-wetting on the emissions of unburned and partially-burned hydrocarbons (HCs) from gasoline-fueled SI engines was investigated experimentally. A spark-plug mounted directional injection probe was developed to study the fate of liquid fuel which impinges on different surfaces of the combustion chamber, and to quantify its contribution to the HC emissions from direct-injected (DI) and port-fuel injected (PFI) engines. With this probe, a controlled amount of liquid fuel was deposited on a given location within the combustion chamber at a desired crank angle while the engine was operated on pre-mixed LPG. Thus, with this technique, the HC emissions due to in-cylinder wall wetting were studied independently of all other HC sources. Results from these tests show that the location where liquid fuel impinges on the combustion chamber has a very important effect on the resulting HC emissions.
Technical Paper

The Effect of Heavy-Duty Diesel Cylinder Deactivation on Exhaust Temperature, Fuel Consumption, and Turbocharger Performance up to 3 bar BMEP

2020-04-14
2020-01-1407
Diesel Cylinder Deactivation (CDA) has been shown in previous work to increase exhaust temperatures, improve fuel efficiency, and reduce engine-out NOx for engine loads up to 3 bar BMEP. The purpose of this study is to determine whether or not the turbocharger needs to be altered when implementing CDA on a diesel engine. This study investigates the effect of CDA on exhaust temperature, fuel efficiency, and turbocharger performance in a 15L heavy-duty diesel engine under low-load (0-3 bar BMEP) steady-state operating conditions. Two calibration strategies were evaluated. First, a “stay-hot” thermal management strategy in which CDA was used to increase exhaust temperature and reduce fuel consumption. Next, a “get-hot” strategy where CDA and elevated idle speed was used to increase exhaust temperature and exhaust enthalpy for rapid aftertreatment warm-up.
Technical Paper

The Effect of Fuel Injection on the Velocity Fluctuations in the Bowl of a DISI Engine

2005-05-11
2005-01-2102
Swirl plane Particle Image Velocimetry (PIV) measurements were performed in a single-cylinder optically accessible gasoline direct injection (DISI) engine using a borescope introduced through the spark plug hole. This allowed the use of a contoured piston and the visualization of the flow field in and around the piston bowl. The manifold absolute pressure (MAP) was fixed at 90 kPa and the engine speed was varied in increments of 250 rpm from 750 rpm to 2000 rpm. Images were taken from 270° to 320° bTDC of compression at 10° intervals to study the evolution of the velocity fluctuations. Measurements were performed with and without fuel injection to study its effect on the in-cylinder flow fields. Fuel was injected at 10 MPa and 5 MPa. The 2-D spatial mean velocities of individual flow fields and their decompositions were averaged over 100 cycles and used to investigate the effects of engine speed and image timing on the flow field.
Journal Article

Technology Levers for Meeting 2027 NOx and CO2 Regulations

2023-04-11
2023-01-0354
Commercial vehicles require fast aftertreatment heat-up to move the SCR catalyst into the most efficient temperature range to meet upcoming NOX regulations while minimizing CO2. The focus of this paper is to identify the technology levers when used independently and also together for the purpose of NOX and CO2 reduction toward achieving 2027 emissions levels while remaining CO2 neutral or better. A series of independent levers including cylinder deactivation, LO-SCR, electric aftertreatment heating and fuel burner technologies were explored. All fell short for meeting the 2027 CARB transient emission targets when used independently. However, the combinations of two of these levers were shown to approach the goal of transient emissions with one configuration meeting the requirement. Finally, the combination of three independent levers were shown to achieve 40% margin for meeting 2027 transient NOx emissions while remaining CO2 neutral.
X