Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Transient Fuel Modeling and Control for Cold Start Intake Cam Phasing

2006-04-03
2006-01-1049
Advancing intake valve timing shortly after engine crank and run-up can potentially reduce vehicle cold start hydrocarbon (HC) emissions in port fuel injected (PFI) engines equipped with intake variable cam timing (iVCT). Due to the cold metal temperatures, there can be significant accumulation of liquid fuel in the intake system and in the cylinder. This accumulation of liquid fuel provides potential sources for unburned hydrocarbons (HCs). Since the entire vehicle exhaust system is cold, the catalyst will not mitigate the release of unburned HCs. By advancing the intake valve timing and increasing valve overlap, liquid fuel vaporization in the intake system is enhanced thereby increasing the amount of burnable fuel in the cylinder. This increase in burnable HCs must be countered by a reduction in injector-delivered fuel via a compensator that reacts to cam movement.
Journal Article

Modeling the Cold Start of the Ford 3.5L V6 EcoBoost Engine

2009-04-20
2009-01-1493
Optimization of the engine cold start is critical for gasoline direct injection (GDI) engines to meet increasingly stringent emission regulations, since the emissions during the first 20 seconds of the cold start constitute more than 80% of the hydrocarbon (HC) emissions for the entire EPA FTP75 drive cycle. However, Direct Injection Spark Ignition (DISI) engine cold start optimization is very challenging due to the rapidly changing engine speed, cold thermal environment and low cranking fuel pressure. One approach to reduce HC emissions for DISI engines is to adopt retarded spark so that engines generate high heat fluxes for faster catalyst light-off during the cold idle. This approach typically degrades the engine combustion stability and presents additional challenges to the engine cold start. This paper describes a CFD modeling based approach to address these challenges for the Ford 3.5L V6 EcoBoost engine cold start.
Technical Paper

Engine Cycle Simulation of Ethanol and Gasoline Blends

2003-10-27
2003-01-3093
Ethanol is one of many alternative transportation fuels that can be burned in internal combustion engines in the same ways as gasoline and diesel. Compared to hydrogen and electric energy, ethanol is very similar to gasoline in many aspects and can be delivered to end-users by the same infrastructures. It can be produced from biomass and is considered renewable. It is expected that the improvement in fuels over the next 20 years will be by blending biomass-based fuels with fossil fuels using existing technologies in present-day automobiles with only minor modifications, even though the overall costs of using biomass-based fuels are still considerably higher than conventional fuels. Ethanol may represent a significant alternative fuel source, especially during the transition from fossil-based fuels to more exotic power sources. Mapping engines for flexible fuel vehicles (FFV), however, would be very costly and time consuming, even with the help of model-based engine mapping (MBM).
Technical Paper

Development of a CAE Method for Predicting Vehicle Launch Performance with Various VCT Strategies

2018-04-03
2018-01-0487
Powertrain and vehicle technology is rapidly changing to meet the ever increasing demands of customers and government regulations. In some cases technologies that are designed to improve one attribute may impact others or interact with other design decisions in unexpected ways. Understanding the interactions and optimizing the transient performance at the vehicle level may require controls and calibration that is not available until late in the vehicle development process, after hardware changes are no longer possible. As a result, an efficient, up front, CAE process for assessing the interaction of various design choices on transient vehicle behavior is desirable. Building, calibrating and validating a vehicle system model with full controls and a mature calibration is very time consuming and often requires significant experimental data that is not available until it is too late to make hardware changes.
X