Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

Water-Gas-Shift Catalyst Development and Optimization for a D-EGR® Engine

2015-09-01
2015-01-1968
Dedicated Exhaust Gas Recirculation (D-EGR®) technology provides a novel means for fuel efficiency improvement through efficient, on-board generation of H2 and CO reformate [1, 2]. In the simplest form of the D-EGR configuration, reformate is produced in-cylinder through rich combustion of the gasoline-air charge mixture. It is also possible to produce more H2 by means of a Water Gas Shift (WGS) catalyst, thereby resulting in further combustion improvements and overall fuel consumption reduction. In industrial applications, the WGS reaction has been used successfully for many years. Previous engine applications of this technology, however, have only proven successful to a limited degree. The motivation for this work was to develop and optimize a WGS catalyst which can be employed to a D-EGR configuration of an internal combustion engine. This study consists of two parts.
Technical Paper

Use of Nitric Acid to Control the NO2:NOX Ratio within the Exhaust Composition Transient Operation Laboratory Exhaust Stream

2020-04-14
2020-01-0371
The Exhaust Composition Transient Operation LaboratoryTM (ECTO-LabTM) is a burner system developed at Southwest Research Institute (SwRI) for simulation of IC engine exhaust. The current system design requires metering and combustion of nitromethane in conjunction with the primary fuel source as the means of NOX generation. While this method affords highly tunable NOX concentrations even over transient cycles, no method is currently in place for dictating the speciation of nitric oxide (NO) and nitrogen dioxide (NO2) that constitute the NOX mixture. NOX generated through combustion of nitromethane is dominated by NO, and generally results in an NO2:NOX ratio of < 5 %. Generation of any appreciable quantities of NO2 is therefore dependent on an oxidation catalyst to oxidize a fraction of the NO to NO2.
Technical Paper

Solid Particle Number and Ash Emissions from Heavy-Duty Natural Gas and Diesel w/SCRF Engines

2018-04-03
2018-01-0362
Solid and metallic ash particle number (PN) and particulate matter (PM) mass emission measurements were performed on a heavy-duty (HD) on-highway diesel engine and a compressed natural gas (CNG) engine. Measurements were conducted under transient engine operation that included the FTP, WHTC and RMC. Both engines were calibrated to meet CARB ultra low NOX emission target of 0.02 g/hp-hr, a 90% reduction from current emissions limit. The HD diesel engine final exhaust configuration included a number of aftertreatement sub-systems in addition to a selective catalytic reduction filter (SCRF). The stoichiometric CNG engine final configuration included a closed coupled Three Way Catalyst (ccTWC) and an under floor TWC (ufTWC). The aftertreatment systems for both engines were aged for a full useful life (FUL) of 435,000 miles, prior to emissions testing. PM mass emissions from both engines were comparable and well below the US EPA emissions standard.
Technical Paper

Particle Emissions from Gasoline Direct Injection Engines during Engine Start-Up (Cranking)

2019-04-02
2019-01-1182
Engine start-up (cranking) can be an important source of particle emissions from vehicles. With the penetration of GDI vehicles in the global vehicle fleet, it is important to analyze and understand the contribution of start-up particle emissions from GDI vehicles, and the potential effects of fuel properties on that process. In this work, chassis dynamometer based investigation on the effect of several gasoline fuels (commercial and blended) on both, naturally aspirated and turbocharged GDI vehicles were conducted to understand the importance of engine start up, in particular, cranking. 10 commercially available gasoline fuels were tested on a naturally aspirated 2010 model year GDI vehicle, 3 among these commercially available fuels were tested on another 2009 model year turbocharged GDI vehicle, and 8 blended gasoline fuels were tested on 12 other GDI vehicles (7 turbocharged and 5 naturally aspirated) ranging in model years 2011-2015.
Technical Paper

Investigation of Urea Derived Deposits Composition in SCR Systems and Their Potential Effect on Overall PM Emissions

2016-04-05
2016-01-0989
Ideally, complete thermal decomposition of urea should produce only two products in active Selective Catalytic Reduction (SCR) systems: ammonia and carbon dioxide. In reality, urea thermal decomposition reaction includes the formation of isocyanic acid as an intermediate product. Being highly reactive, isocyanic acid can initiate the formation of larger molecular weight compounds such as cyanuric acid, biuret, melamine, ammeline, ammelide, and dicyandimide [1,2,3,4]. These compounds can be responsible for the formation of deposits on the walls of the decomposition reactor in urea SCR systems. Composition of these deposits varies with temperature exposure, and under certain conditions, can create oligomers such as melam, melem, and melon [5, 6] that are difficult to remove from exhaust systems. Deposits can affect the efficiency of the urea decomposition, and if large enough, can inhibit the exhaust flow.
Technical Paper

Investigation of Urea Derived Deposits Composition in SCR Systems

2016-10-17
2016-01-2327
Ideally, complete decomposition of urea should produce only two products in active Selective Catalytic Reduction (SCR) systems: ammonia and carbon dioxide. In reality, urea decomposition reaction is a two-step process that includes the formation of ammonia and isocyanic acid as intermediate products via thermolysis. Being highly reactive, isocyanic acid can initiate the formation of larger molecular weight compounds such as cyanuric acid (CYN), biuret (BIU), melamine (MEL), ammeline (AML), ammelide (AMD), and dicyandimide (DICY). These compounds can be responsible for the formation of deposits on the walls of the decomposition reactor in urea SCR systems. Composition of these deposits varies with temperature exposure, and under certain conditions can create oligomers that are difficult to remove from exhaust pipes. Deposits can affect efficiency of the urea decomposition, and if large enough, can inhibit the exhaust flow and negatively impact ammonia distribution on the SCR catalyst.
Technical Paper

Investigation into Low-Temperature Urea-Water Solution Decomposition by Addition of Titanium-Based Isocyanic Acid Hydrolysis Catalyst and Surfactant

2020-04-14
2020-01-1316
Mitigation of urea deposit formation and improved ammonia production at low exhaust temperatures continues to be one of the most significant challenges for current generation selective catalytic reduction (SCR) aftertreatment systems. Various technologies have been devised to alleviate these issues including: use of alternative reductant sources, and thermal treatment of the urea-water solution (UWS) pre-injection. The objective of this work was to expand the knowledge base of a potential third option, which entails chemical modification of UWS by addition of a titanium-based urea/isocyanic acid (HNCO) decomposition catalysts and/or surfactant to the fluid. Physical solid mixtures of urea with varying concentrations of ammonium titanyl oxalate (ATO), oxalic acid, and titanium dioxide (TiO2) were generated, and the differences in NH3 and CO2 produced upon thermal decomposition were quantified.
Technical Paper

Fuel Reforming and Catalyst Deactivation Investigated in Real Exhaust Environment

2019-04-02
2019-01-0315
Increased in-cylinder hydrogen levels have been shown to improve burn durations, combustion stability, HC emissions and knock resistance which can directly translate into enhanced engine efficiency. External fuel reformation can also be used to increase the hydrogen yield. During the High-Efficiency, Dilute Gasoline Engine (HEDGE) consortium at Southwest Research Institute (SwRI), the potential of increased hydrogen production in a dedicated-exhaust gas recirculation (D-EGR) engine was evaluated exploiting the water gas shift (WGS) and steam reformation (SR) reactions. It was found that neither approach could produce sustained hydrogen enrichment in a real exhaust environment, even while utilizing a lean-rich switching regeneration strategy. Platinum group metal (PGM) and Ni WGS catalysts were tested with a focus on hydrogen production and catalyst durability.
Technical Paper

Evaluation of an On-Board, Real-Time Electronic Particulate Matter Sensor Using Heavy-Duty On-Highway Diesel Engine Platform

2020-04-14
2020-01-0385
California Air Resources Board (CARB) has instituted requirements for on-board diagnostics (OBD) that makes a spark-plug sized exhaust particulate matter (PM) sensor a critical component of the OBD system to detect diesel particulate filter (DPF) failure. Currently, non-real-time resistive-type sensors are used by engine OEMs onboard vehicles. Future OBD regulations are likely to lower PM OBD thresholds requiring higher sensitivity sensors with better data yield for OBD decision making. The focus of this work was on the experimental evaluation of a real-time PM sensor manufactured by EmiSense Technologies, LLC that may offer such benefits. A 2011 model year on-highway heavy-duty diesel engine fitted with a diesel oxidation catalyst (DOC) and a catalyzed DPF followed by urea-based selective catalytic reducer (SCR) and ammonia oxidation (AMOX) catalysts was used for this program.
Technical Paper

Effects of Catalyst Formulation on Vehicle Emissions With Respect to Gasoline Fuel Sulfur Level

1999-10-25
1999-01-3675
Proposed emissions standards will require that emissions control systems function at extremely high efficiency. Recently, studies have shown that elevated gasoline fuel sulfur levels (GFSL) can impair catalytic converter efficiency. In this study, a variety of tri-metal catalysts were evaluated to determine if formulation changes could reduce emissions sensitivity to GFSL. Catalysts with elemental composition similar to an OEM, but with double the precious metal (PM) loading, were evaluated using 38 and 620 ppm GFSL. Doubling the PM loading significantly reduced catalyst sensitivity to sulfur. Doubling the rhodium loading, at the expense of the platinum loading, significantly improved NOx emission sulfur sensitivity.
Technical Paper

Development of a Burner-Based Test System to Produce Controllable Particulate Emissions for Evaluation of Gasoline Particulate Filters

2020-04-14
2020-01-0389
Gasoline Direct Injection (GDI) engines have been widely adopted by manufacturers in the light-duty market due to their fuel economy benefits. However, several studies have shown that GDI engines generate higher levels of particulate matter (PM) emissions relative to port fuel injected (PFI) engines and diesel engines equipped with optimally functioning diesel particulate filters (DPF). With stringent particle number (PN) regulations being implemented in both, the European Union and China, gasoline particulate filters (GPF) are expected to be widely utilized to control particulate emissions. Currently, evaluating GPF technologies on a vehicle can be challenging due to a limited number of commercially available vehicles that are calibrated for a GPF in the United States as well as the costs associated with vehicle procurement and evaluations utilizing a chassis dynamometer facility.
Technical Paper

Detailed Characterization of Criteria Pollutant Emissions from D-EGR® Light Duty Vehicle

2016-04-05
2016-01-1006
In this study, the criteria pollutant emissions from a light duty vehicle equipped with Dedicated EGR® technology were compared with emissions from an identical production GDI vehicle without externally cooled EGR. In addition to the comparison of criteria pollutant mass emissions, an analysis of the gaseous and particulate chemistry was conducted to understand how the change in combustion system affects the optimal aftertreatment control system. Hydrocarbon emissions from the vehicle were analyzed usin g a variety of methods to quantify over 200 compounds ranging in HC chain length from C1 to C12. The particulate emissions were also characterized to quantify particulate mass and number. Gaseous and particulate emissions were sampled and analyzed from both vehicles operating on the FTP-75, HWFET, US06, and WLTP drive cycles at the engine outlet location.
Technical Paper

Deposit Reduction in SCR Aftertreatment Systems by Addition of Ti-Based Coordination Complex to UWS

2019-04-02
2019-01-0313
Formation of urea-derived deposits in selective catalytic reduction (SCR) aftertreatment systems continues to be problematic at temperatures at and below 215 °C. Several consequences of deposit formation include: NOx and NH3 slip, exhaust flow maldistribution, increased engine backpressure, and corrosion of aftertreatment components. Numerous methods have been developed to reduce deposit formation, but to date, there has been no solution for continuous low-temperature dosing of Urea-Water Solution (UWS). This manuscript presents a novel methodology for reducing low-temperature deposit formation in SCR aftertreatment systems. The methodology described herein involves incorporation and dissolution of an HNCO hydrolysis catalyst directly into the UWS. HNCO is a transient species formed by the thermolysis of urea upon injection of UWS into the aftertreatment system.
Technical Paper

Comparison of Accelerated Ash Loading Methods for Gasoline Particulate Filters

2018-09-10
2018-01-1703
Recent legislation enacted for the European Union (EU) and the United States calls for a substantial reduction in particulate mass (and number in the EU) emissions from gasoline spark-ignited vehicles. The most prominent technology being evaluated to reduce particulate emissions from a gasoline vehicle is a wall flow filter known as a gasoline particulate filter (GPF). Similar in nature to a diesel particulate filter (DPF), the GPF will trap and store particulate emissions from the engine, and oxidize said particulate with frequent regeneration events. The GPF will also collect ash particles in the wall flow substrate, which are metallic components that cannot be oxidized into gaseous components. Due to high temperature operation and frequent regeneration of the GPF, the impact of ash on the GPF has the potential to be substantially different from the impact of ash on the DPF.
Journal Article

Achieving Ultra Low NOX Emissions Levels with a 2017 Heavy-Duty On-Highway TC Diesel Engine - Comparison of Advanced Technology Approaches

2017-03-28
2017-01-0956
The 2010 emissions standards for heavy-duty engines have established a limit of oxides of nitrogen (NOX) emissions of 0.20 g/bhp-hr. However, the California Air Resource Board (ARB) projects that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards, the National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter (PM) and Ozone will not be achieved without further reduction in NOX emissions. The California Air Resources Board (CARB) funded a research program to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions.
X