Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Use of Dynamic Valving to Achieve Residual-Affected Combustion

2001-03-05
2001-01-0549
Studies have been conducted to assess the potential of variable valve actuation to initiate homogeneous charge compression ignition (HCCI) through reinduction of exhaust from the previous combustion cycle. As opposed to strategies which induce HCCI through use of either intake or exhaust throttling, use of exhaust reinduction incurs no pumping penalty, making it particularly attractive as a method for achieving efficient, light-load combustion. Using a fully flexible electrohydraulic valve actuation system, tests were conducted on a single-cylinder research engine using three strategies: late exhaust valve closing, late intake valve opening (used in conjunction with the exhaust valve being left open throughout the intake stroke), and a combination of the two. Results show that IMEP values from ∼30-55% of unthrottled SI combustion output could be obtained by varying the valve timings used to implement reinduction.
Journal Article

Prospects for High-Temperature Combustion, Neat Alcohol-Fueled Diesel Engines

2014-04-01
2014-01-1194
The use of neat alcohols, namely methanol and ethanol, in direct-injection, compression-ignited engines is difficult, most notably due to their poor ignitability. By employing a high-temperature combustion strategy, this challenge may be overcome, thus creating the opportunity for using these oxygenated and inherently low-sooting fuels for heavy-load applications. Experimental data are provided from a single-cylinder research engine that shows particulate matter (PM) emissions for Diesel-style combustion of both methanol and ethanol that are below the current US Government regulation limit. The level of particulates remained low up to stoichiometric ratios of fuel and air. A complete emissions analysis indicates a high combustion efficiency of ∼ 96% at stoichiometric conditions. In order to achieve reliable combustion, some form of intake-air preheating was required.
Journal Article

PLIF Measurements of Thermal Stratification in an HCCI Engine under Fired Operation

2011-04-12
2011-01-1291
Tracer-based PLIF temperature diagnostics have been used to study the distribution and evolution of naturally occurring thermal stratification (TS) in an HCCI engine under fired and motored operation. PLIF measurements, performed with two excitation wavelengths (277, 308 nm) and 3-pentanone as a tracer, allowed investigation of TS development under relevant fired conditions. Two-line PLIF measurements of temperature and composition were first performed to track the mixing of the fresh charge and hot residuals during intake and early compression strokes. Results showed that mixing occurs rapidly with no measureable mixture stratification remaining by early compression (220°CA aTDC), confirming that the residual mixing is not a leading cause of thermal stratification for low-residual (4-6%) engines with conventional valve timing.
Technical Paper

Overcoming Pressure Waves to Achieve High Load HCCI Combustion

2014-04-01
2014-01-1269
There is significant motivation to extend the operating range of naturally aspirated HCCI combustion to high load (8-12 bar IMEP) to attain a combustion strategy with the efficiency benefits of HCCI but without the lost power density of a lean or highly diluted charge. Currently, the high-load limit of HCCI combustion is imposed by a phenomenon commonly known as ringing. Ringing results when the kinetically-driven autoignited combustion process proceeds in such a way as to form strong pressure waves which reverberate in the engine. Inhomogeneities and gradients in mixture reactivity lead certain regions to react ahead of others, and as a result, coupling can occur between a pressure wave and the reaction front. This paper seeks first to sort several related but distinct issues that impose the high load limit: ringing, engine damage, peak in-cylinder pressure, peak rate of pressure rise, and engine noise.
Technical Paper

Model-Based Air-Fuel Ratio Control in SI Engines with a Switch-Type EGO Sensor

1994-03-01
940972
High bandwidth control of the air-fuel ratio is necessary in order to minimize the exhaust emissions of spark-ignition engines with three-way catalytic converters. A new approach is to implement a control structure based on modern control and estimation theory. This work describes the implementation of an estimator-based controller which uses the feedback from an on-off zirconia exhaust oxygen sensor of the type currently used in production vehicles. The limit-cycle associated with the on-off oxygen sensor in conventional systems is eliminated with the estimator-based control structure. Furthermore, the in-cylinder air-fuel ratio tracks the commanded value, so that if a limit cycle is desired in some areas of the engine's operating range for better catalyst operation, its amplitude and frequency can be set arbitrarily.
Technical Paper

Engine Air-Fuel Ratio Control Using an Event-Based Observer

1993-03-01
930766
Better fuel economy, reduced exhaust emissions and better drivability strongly depend on precise control of air-fuel ratio (AFR) during both steady and transient engine operations. A discrete, nonlinear fuel-injected SI engine model was developed and used for the design of AFR control algorithms. The engine model includes intake manifold air dynamics, fuel wall-wetting dynamics, and cycle delays inherent in the four-stroke engine processes. The sampling period is synchronous with crank angle (“event-based”) as opposed to the conventional time synchronous sampling scheme (“time-based”). The model was validated with test data over a wide range of engine operating conditions. The exhaust O2 sensor can only provide a delayed and lagged AFR signal to the controller. This inherent delay in the measurement will slow down the system response if conventional feedback control design is used.
Journal Article

Effect of Post Injections on In-Cylinder and Exhaust Soot for Low-Temperature Combustion in a Heavy-Duty Diesel Engine

2010-04-12
2010-01-0612
Multiple fuel-injections during a single engine cycle can reduce combustion noise and improve pollutant emissions tradeoffs. Various hypotheses have been proposed in the literature regarding the in-cylinder processes responsible for the pollutant emissions improvements. This paper provides a brief overview of these hypotheses along with an investigation exploring which of these mechanisms are important for post injections under low-temperature combustion (LTC) conditions in a heavy-duty diesel engine. In-cylinder soot and exhaust smoke are measured by 2-color soot thermometry and filter paper blackening, respectively. The evolution and interaction of soot regions from each of the injections is visualized using high-speed imaging of soot luminosity, both in the piston bowl and in the squish regions.
Journal Article

Determination of Cycle Temperatures and Residual Gas Fraction for HCCI Negative Valve Overlap Operation

2010-04-12
2010-01-0343
Fuel injection during negative valve overlap offers a promising method of controlling HCCI combustion, but sorting out the thermal and chemical effects of NVO fueling requires knowledge of temperatures throughout the cycle. Computing bulk temperatures throughout closed portions of the cycle is relatively straightforward using an equation of state, once a temperature at one crank angle is established. Unfortunately, computing charge temperatures at intake valve closing for NVO operation is complicated by a large, unknown fraction of residual gases at unknown temperature. To address the problem, we model blowdown and recompression during exhaust valve opening and closing events, allowing us to estimate in-cylinder charge temperatures based on exhaust-port measurements. This algorithm permits subsequent calculation of crank-angle-resolved bulk temperatures and residual gas fraction over a wide range of NVO operation.
Technical Paper

Catalytic Oxidation of Carbon Monoxide in a Large Scale Planar Isothermal Passage

1992-10-01
922332
The efficiency and durability of catalytic converters for automobiles are determined by several heat and mass transport mechanisms acting in concert. This study characterizes these mechanisms with measured temperature and concentration profiles throughout a large-scale catalytic passage at fixed wall temperature. The increased passage size allows the concentration field within the passage to be accurately monitored. A small isokinetic sampling probe and laser positioning system enable the concentrations to be spatially resolved to within 0.04 mm and ten transverse locations are sampled at each axial station. The active walls are coated with a Pt catalyst over a production alumina washcoat containing 28% Ceria on a metal substrate. The walls are 2 cm apart, which is roughly 16 times larger than in a conventional monolith passage, so the Reynolds number is adjusted for scale similarity with commercial devices.
Journal Article

An In-cylinder Laser Absorption Sensor for Crank-angle-resolved Measurements of Gasoline Concentration and Temperature

2010-10-25
2010-01-2251
Simultaneous crank-angle-resolved measurements of gasoline concentration and gas temperature were made with two-color mid-infrared (mid-IR) laser absorption in a production spark-ignition engine (Nissan MR20DE, 2.0L, 4 cyl, MPI with premium gasoline). The mid-IR light was coupled into and out of the cylinder using fiber optics incorporated into a modified spark plug. The absorption line-of-sight was a 5.3 mm optical path located closely adjacent to the ignition spark providing spatially resolved absorption. Two sensor wavelengths were selected in the strong bands associated with the carbon-hydrogen (C-H) stretching vibration near 3.4 μm, which have an absorption ratio that is strongly temperature dependent. Fuel concentration and temperature were determined simultaneously from the absorption at these two wavelengths.
Technical Paper

Adaptive Air-Fuel Ratio Control of a Spark-Ignition Engine

1994-03-01
940373
Good control of air-fuel ratio under all operating conditions is essential for low exhaust emissions. In an effort to achieve this goal, an engine model based observer control structure has been applied to a single-cylinder CFR engine. The model includes fuel puddle dynamics, cycle delays inherent in the four-stroke engine process, and sensor dynamics for a universal exhaust gas oxygen (UEGO) sensor. This control structure has been shown to be capable of maintaining the air-fuel ratio within 0.5% rms of the commanded stoichiometric value during throttle transients. To achieve this level of performance, accurate values of model parameters such as time constants, delay times, and fuel puddle parameters are necessary. Since these parameters tend to vary with engine speed, throttle angle, time, and temperature, a method of periodically updating these parameter values is useful.
X