Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Journal Article

Virtual Cylinder Pressure Sensor for Transient Operation in Heavy-Duty Engines

2015-04-14
2015-01-0872
Cylinder pressure-based combustion control is widely introduced for passenger cars. Benefits include enhanced emission robustness to fuel quality variation, reduced fuel consumption due to more accurate (multi-pulse) fuel injection, and minimized after treatment size. In addition, it enables the introduction of advanced, high-efficient combustion concepts. The application in truck engines is foreseen, but challenges need to be overcome related to durability, increased system costs, and impact on the cylinder head. In this paper, a new single cylinder pressure sensor concept for heavy-duty Diesel engines is presented. Compared to previous studies, this work focuses on heavy-duty Diesel powertrains, which are characterized by a relatively flexible crank shaft in contrast to the existing passenger car applications.
Technical Paper

Validation of Control-Oriented Heavy Duty Diesel Engine Models for Non-Standard Ambient Conditions

2019-04-02
2019-01-0196
Complying to both the increasingly stringent pollutant emissions as well as (future) GHG emission legislation - with increased focus on in-use real-world emissions - puts a great challenge to the engine/aftertreatment control development process. Control system complexity, calibration and validation effort has increased dramatically over the past decade. A trend that is likely to continue considering the next steps in emission and GHG emission legislation. Control-oriented engine models are valuable tools for efficient development of engine monitoring and control systems. Furthermore, these (predictive) engine models are more and more used as part of control algorithms to ensure legislation compliant and optimized performance over the system lifetime. For these engine models, it is essential that simulation and prediction of system variables during non-nominal engine operation, such as non-standard ambient conditions, is well captured.
Technical Paper

Technical and Economical Assessment of Diesel and Gas Engine Technology for Enhanced Environmentally Friendly Vehicles (EEV)

2000-03-06
2000-01-1175
Initiatives have been and will be taken to define very strict emission limitations for Heavy-Duty (HD) urban transport vehicles in Europe. This will probably led to a class of very clean, so-called, Enhanced Environmentally friendly Vehicles (EEV). This paper presents an overview of the current and the (expected) future emission legislation for this type of vehicle together with the different technology that can be used for the development of internal combustion engines for these vehicles. A number of engine concepts, based on the experience of developing these concepts, are described and compared both from a technological and economic standpoint. It can be concluded that EEV emission limits can be achieved with advanced diesel engine concepts as well as with gas engines. From the economical viewpoint it can be concluded that gas engines can compete with diesel engines.
Technical Paper

Single Bank NOx Adsorber for Heavy Duty Diesel Engines

2003-05-19
2003-01-1885
In a NOx adsorber programme the feasibility for applying this technology to heavy duty diesel engines was investigated. After modelling and simulations for realising best λ < 1 engine conditions a platform was build which was used to obtain good NOx adsorber regeneration settings in a number of steady state key points without violating pre-defined limits. With these results the NOx adsorber was evaluated and tested. Besides establishing NOx conversions and BSFC penalties the programme also looked at the adsorber capabilities of dealing with sulphur poisoning and how well the adsorber could be de-sulphurised. This programme showed clearly the stronger and weaker points in the NOx adsorber technology for heavy duty application. From NOx conversion - BSFC penalty trade off curves it became clear that at lower loads high conversions (> 90%) with small fuel penalties (< 2.5%) were possible. However at high load the conversions were reduced (< 70%) and the fuel penalties increased (> 6%).
Journal Article

Robust, Cost-Optimal and Compliant Engine and Aftertreatment Operation using Air-path Control and Tailpipe Emission Feedback

2016-04-05
2016-01-0961
Heavy-duty diesel engines are used in a wide range of applications. For varying operating environments, the engine and aftertreatment system must comply with the real-world emission legislation limits. Simultaneously, minimal fuel consumption and good drivability are crucial for economic competitiveness and usability. Meeting these requirements takes substantial development and calibration effort, and complying with regulations results in a trade-off between emissions and fuel consumption. TNO's Integrated Emission Management (IEM) strategy finds online, the cost-optimal point in this trade-off and is able to deal with variations in operating conditions, while complying with legislation limits. Based on the actual state of the engine and aftertreatment system, an optimal engine operating point is computed using a model-based optimal-control algorithm.
Journal Article

Robust Emission Management Strategy to Meet Real-World Emission Requirements for HD Diesel Engines

2015-04-14
2015-01-0998
Heavy-duty diesel engines are used in different application areas, like long-haul, city distribution, dump truck and building and construction industry. For these wide variety of areas, the engine performance needs to comply with the real-world legislation limits and should simultaneously have a low fuel consumption and good drivability. Meeting these requirements takes substantial development and calibration effort, where an optimal fuel consumption for each application is not always met in practice. TNO's Integrated Emission Management (IEM) strategy, is able to deal with these variations in operating conditions, while meeting legislation limits and obtaining on-line cost optimization. Based on the actual state of the engine and aftertreatment, optimal air-path setpoints are computed, which balances EGR and SCR usage.
Technical Paper

Laboratory Experience with the IR-TRACC Chest Deflection Transducer

2002-03-04
2002-01-0188
In 1998, Rouhana et al. described development of a new device, called the IR-TRACC (InfraRed - Telescoping Rod for Assessment of Chest Compression). In its original concept, the IR-TRACC uses two infrared LEDs inside of a telescoping rod to measure deflection. One LED serves as a light transmitter and the other as a light receiver. The output from the receiver LED is converted to a linear function of chest compression using an analog circuit. Tests have been performed with IR-TRACC units at various labs around the world since 1998. A first-generation IR-TRACC system was retrofit into a Q3 dummy by TNO. Similarly, a mid sized male Hybrid III dummy thorax and a small female Hybrid III dummy thorax have been designed by First Technology Safety Systems (FTSS) such that each contains 4 second-generation IR-TRACC units. The second-generation IR-TRACC is the result of continued development by FTSS, especially in the areas of the analysis circuit, manufacturing and calibration methods.
Journal Article

Integrated Emission Management strategy for cost-optimal engine-aftertreatment operation

2011-04-12
2011-01-1310
A new cost-based control strategy is presented that optimizes engine-aftertreatment performance under all operating conditions. This Integrated Emission Management strategy minimizes fuel consumption within the set emission limits by on-line adjustment of air management based on the actual state of the exhaust gas aftertreatment system. Following a model-based approach, Integrated Emission Management offers a framework for future control strategy development. This approach alleviates calibration complexity, since it allows to make optimal trade-offs in an operational cost sense. The potential of the presented cost-optimal control strategy is demonstrated for a modern heavy-duty Euro VI engine. The studied diesel engine is equipped with cooled EGR, Variable Geometry Turbocharger, and a DPF-SCR aftertreatment system.
Technical Paper

Experimental Validation of a Dynamic Waste Heat Recovery System Model for Control Purposes

2013-04-08
2013-01-1647
This paper presents the identification and validation of a dynamic Waste Heat Recovery (WHR) system model. Driven by upcoming CO₂ emission targets and increasing fuel costs, engine exhaust gas heat utilization has recently attracted much attention to improve fuel efficiency, especially for heavy-duty automotive applications. In this study, we focus on a Euro-VI heavy-duty diesel engine, which is equipped with a Waste Heat Recovery system based on an Organic Rankine Cycle. The applied model, which combines first principle modeling with stationary component models, covers the two-phase flow behavior and the effect of control inputs. Furthermore, it describes the interaction with the engine on both gas and drivetrain side. Using engine dynamometer measurements, an optimal fit of unknown model parameters is determined for stationary operating points.
Technical Paper

Experimental Demonstration of RCCI in Heavy-Duty Engines using Diesel and Natural Gas

2014-04-01
2014-01-1318
Premixed combustion concepts like PCCI and RCCI have attracted much attention, since these concepts offer possibilities to reduce engine out emissions to a low level, while still achieving good efficiency. Most RCCI studies use a combination of a high-cetane fuel like diesel, and gasoline as low-cetane fuel. Limited results have been published using natural gas as low-cetane fuel; especially full scale engine results. This study presents results from an experimental study of diesel-CNG RCCI operation on a 6 cylinder, 8 l heavy duty engine with cooled EGR. This standard Tier4f diesel engine was equipped with a gas injection system, which used single point injection and mixed the gaseous fuel with air upstream of the intake manifold. For this engine configuration, RCCI operating limits have been explored. In the 1200-1800 rpm range, RCCI operation with Euro-VI engine out NOx and soot emissions was achieved between 2 and 9 bar BMEP without EGR.
Technical Paper

Engine Dynamometer and Vehicle Performance of a Urea SCR-System for Heavy-Duty Truck Engines

2002-03-04
2002-01-0286
The application of SCR deNOx aftertreatment was studied on two about 12 liter class heavy-duty diesel engines within a consortium project. Basically, the system consists of a dosage system for aqueous urea injection and a vanadia based SCR catalyst, without an upstream or downstream oxidation catalyst. The urea injection system for a DAF and a Renault V.I. (Véhicules Industriels) diesel engine was calibrated on the engine test bench taking into account dynamic effects of the catalyst. For both engine applications NOx reduction was 81% to 84% over the ESC and 72% over the ETC. CO emission increased up to 27%. PM emission is reduced by 4 to 23% and HC emission is reduced by more than 80%. These results are achieved with standard diesel fuel with about 350 ppm sulfur. The test engines and SCR deNOx systems were built into a DAF FT95 truck and a Renault V.I. Magnum truck.
Technical Paper

Engine Demonstration of Microwave Assisted Particulate Trap Regeneration

2005-05-11
2005-01-2141
In this study a microwave assisted particulate trap regeneration system has been developed. Microwave technology typically shows uneven temperature distribution in a trap. In this research an innovative technique is introduced: a so-called circular polarizer for generating a more even energy distribution in the trap. Experimental work has been performed on a 1.2 l TDI engine on an engine dynamometer. A cordierite wall-flow trap was located in the exhaust pipe. Experiments have been performed with variation of temperature at the start of regeneration, energy input duration and external combustion air flow. It has been observed that the exhaust gas flow of the engine, even at idle, is too high for maintaining propagating flame fronts. It can be concluded that microwave regeneration with a low-power microwave generator of about 1 kW must be applied in a multiple branch trap system or regeneration events must be applied in periods when the engine is not running.
Journal Article

Development and Application of a Virtual NOx Sensor for Robust Heavy Duty Diesel Engine Emission Control

2017-03-28
2017-01-0951
To meet future emission targets, it becomes increasingly important to optimize the synergy between engine and aftertreatment system. By using an integrated control approach minimal fluid (fuel and DEF) consumption is targeted within the constraints of emission legislation during real-world operation. In such concept, the on-line availability of engine-out NOx emission is crucial. Here, the use of a Virtual NOx sensor can be of great added-value. Virtual sensing enables more direct and robust emission control allowing, for example, engine-out NOx determination during conditions in which the hardware sensor is not available, such as cold start conditions. Furthermore, with use of the virtual sensor, the engine control strategy can be directly based on NOx emission data, resulting in reduced response time and improved transient emission control. This paper presents the development and on-line implementation of a Virtual NOx sensor, using in-cylinder pressure as main input.
Technical Paper

DAF Euro-4 Heavy Duty Diesel Engine with TNO EGR system and CRT Particulates Filter

2001-05-07
2001-01-1947
This paper reports on a study of the TNO venturi EGR system and the Johnson Matthey CRT particulates trap on a DAF 355 kW engine. The results obtained indicate that this EGR-CRT combination is an effective means to achieve EURO-4 emission level, while maintaining good fuel economy. EGR strategy, injection timing and air-fuel ratio were optimised in such a way that good regeneration conditions were obtained across most of the engine operating map. Also transient EGR control is optimised to combine low NOx emission during the ETC with good driveability and good engine out particulates emission. The size of the oxidation catalyst in the CRT was investigated. It appeared that the larger oxidation catalyst showed a better regeneration performance during a low temperature duty-cycle. Negative aspects of a larger oxidation catalyst are increased costs and increased NO2 emission (because of the catalyst ability to oxidise more NO into NO2).
Technical Paper

Cylinder Pressure-Based Control in Heavy-Duty EGR Diesel Engines Using a Virtual Heat Release and Emission Sensor

2010-04-12
2010-01-0564
This paper presents a cylinder pressure-based control (CPBC) system for conventional diesel combustion with high EGR levels. Besides the commonly applied heat release estimation, the CPBC system is extended with a new virtual NOx and PM sensor. Using available cylinder pressure information, these emissions are estimated using a physically based combustion model. This opens the route to advanced On-Board Diagnostics and to optimized fuel consumption and emissions during all operating conditions. The potential of closed-loop CA50 and IMEP control is demonstrated on a multi-cylinder heavy-duty EGR engine. For uncalibrated injectors and fuel variations, the combustion control system makes the engine performance robust for the applied variations and reduces the need for a time-consuming calibration process. Cylinder balancing is shown to enable auto-calibration of fuel injectors and to enhance fuel flexibility.
Journal Article

Automated Model Fit Method for Diesel Engine Control Development

2014-04-01
2014-01-1153
This paper presents an automated fit for a control-oriented physics-based diesel engine combustion model. This method is based on the combination of a dedicated measurement procedure and structured approach to fit the required combustion model parameters. Only a data set is required that is considered to be standard for engine testing. The potential of the automated fit tool is demonstrated for two different heavy-duty diesel engines. This demonstrates that the combustion model and model fit methodology is not engine specific. Comparison of model and experimental results shows accurate prediction of in-cylinder peak pressure, IMEP, CA10, and CA50 over a wide operating range. This makes the model suitable for closed-loop combustion control development. However, NO emission prediction has to be improved.
Technical Paper

Appliance of High EGR Rates With a Short and Long Route EGR System on a Heavy Duty Diesel Engine

2007-04-16
2007-01-0906
The goal of this work was to investigate the possibilities of applying high EGR rates with low NOx and PM emission levels on a two-stage turbocharged 12 liter heavy duty diesel engine. The EGR is applied by using a long and short route EGR system. For the ESC operating points A25 and C100 EGR is applied, such that the NOx emission is 0.5 g/kWh. Lowest PM level and BSFC are achieved when long route EGR is applied in A25 and short route is applied in C100. Increasing the fuel line pressure is an effective way to reduce PM at high EGR rate engine running conditions. At a fuel line pressure of 2400 bar PM emission are 0.06 g/kWh for A25 and 0.54 g/kWh for C100. At C100 the PM reduction coincides with also a significant fuel consumption improvement. Retarding the injection timing at C100 can improve the PM emission further to a level of 0.13 g/kWh at the expense of an increase in BSFC.
X