Refine Your Search

Search Results

Viewing 1 to 19 of 19
Technical Paper

VERTdePN Quality Test Procedures of DPF+SCR Systems

2014-04-01
2014-01-1579
The combined exhaust gas aftertreatment systems (DPF+SCR) are the most efficient way and the best available technology (BAT) to radically reduce the critical Diesel emission components particles (PM&NP) and nitric oxides (NOx). SCR (selective catalytic reduction) is regarded as the most efficient deNOx-system, diesel particle filters are most efficient for soot abatement. Today, several suppliers offer combined systems for retrofitting of HD vehicles. Quality standards for those quite complex systems and especially for retrofit systems are needed to enable decisions of several authorities and to estimate the potentials of improvements of the air quality in highly populated agglomerations. The present paper informs about the VERTdePN *) quality test procedures, which were developed in an international network project with the same name 2007-2011 (VERT … Verification of Emission Reduction Technologies; dePN … decontamination, disposal of PM / NP and of NOx).
Technical Paper

VERT Particulate Trap Verification

2002-03-04
2002-01-0435
Particulate traps are mechanical devices for trapping soot, ash and mineral particles, to curtail emissions from Diesel engines. The filtration effectiveness of traps can be defined, independent of the pertinent engine, as a function of the particle size, space velocity and operating temperature. This method of assessment lowers cost of certifying traps for large-scale retrofitting projects [1,2]. VERT [3] is a joint project of several European environmental and occupational health agencies. The project established a trap-verification protocol that adapts industrial filtration standards [4] to include the influence of soot burden and trap regeneration phenomena. Moreover, it verifies possible catalytic effects from coating substrates and deposited catalytic active material from engine wear or fuel/ lubricant additives.
Technical Paper

Testing of SCR-Systems on HD-Vehicles-TeVeNOx

2014-04-01
2014-01-1569
The selective catalytic reduction SCR is extensively used for NOx reduction of recent HD-vehicles. There are some manufacturers and some applications of SCR as retrofit systems (mostly for the low emission zones LEZ and in combination with a DPF). In charge of Swiss authorities AFHB investigated several SCR-systems, or (DPF+SCR)-systems on HD-vehicles and proposed a simplified quality test procedure of those systems. This procedure can especially be useful for the admission of retrofit systems but it can also be helpful for the quality check of OEM-systems. The project name was TeVeNOx - Testing of Vehicles with NOx reduction systems. In the present paper the test procedures will be described and some specific results will be discussed.
Technical Paper

Retrofitting TRU-Diesel Engines with DPF-Systems Using FBC and Intake Throttling for Active Regeneration

2005-04-11
2005-01-0662
Transport Refrigeration Units (TRU) powered by small diesel engines emit high PM and cause locally high PM levels. The concomitant health risks spurred efforts to devise a cost-effective curtailment of these emissions. Diesel particulate filters (DPF) of ceramic honeycomb construction very efficiently trap PM emissions, even ultrafines in the lung penetrating size range of below 300 nm. A fuel borne catalyst (FBC) can facilitate trap regeneration, by lowering the exhaust temperature requirements, but cannot alone guarantee reliable regeneration under all operating conditions of the TRU. A Swiss development team together with industrial partners therefore developed a fully automatic active regeneration system for the California Air Resources Board.
Technical Paper

Particulate Traps for Retro-Fitting Construction Site Engines VERT: Final Measurements and Implementation

1999-03-01
1999-01-0116
1 The VERT project aimed at curtailing the construction site diesel emissions of ultra-fine particles to 1% of the raw emissions. Thus, compliance with occupational health legislation should be achieved. Particulate traps have attained this target. In contrast, engine tuning, reformulated fuels and oxidation catalytic converters are almost ineffective. This paper reports on the concluding project stage in which 10 traps were field tested during 2 years. Subsequent detailed measurements confirmed the excellent results: > 99% filtration rate was achieved in the nano-particulate range. The PAH, too, were very efficiently eliminated. Trap deployment becomes therefore imperative to fulfill VERT-targets.
Technical Paper

Particulate Traps for Construction Machines Properties and Field Experience

2000-06-19
2000-01-1923
1 Occupational Health Authorities in Germany and Switzerland require the use of particulate traps (PT) on construction machines used in underground and in tunneling since 1994. Swiss EPA has extended this requirement 1998 to all construction sites which are in or close to cities. During the VERT*-project, [1, 2, 3, 4, 5]**, traps systems were evaluated for this purpose and only those providing efficiencies over 95% for ultrafine particles < 200 nm have received official recommendation. 10 trap-systems are very popular now for these application, most of them for retrofitting existing engines. Efficiency data will be given as well as experience during a 2-years authority-controlled field test. LIEBHERR, producing their own Diesel engines in Switzerland and construction machines in Germany is the first company worldwide supplying particulate traps as OEM-feature (Original Equipment Manufacturing) on customers request.
Technical Paper

Particulate Traps Used in City-Buses in Switzerland

2000-06-19
2000-01-1927
1 Switzerland is enforcing the use of particulate traps for offroad applications like construction as well as for occupational health applications like tunneling. This decision is based on the results of the VERT-project (1994-1999), which included basic aerosol research, bench screening and field testing of promising solutions as well as the development of implementation tools like trap specification, certification scheems and field control measures. On the other hand there is no corresponding regulation for city-buses yet although PM 10 is about 2× above limit in most Swiss cities. Public pressure however is growing and city transport authorities have reacted by retrofitting Diesel city-buses instead of waiting for cleaner engine technology or CNG-conversions. The favored trap system with about 200 retrofits so far is the CRT.
Technical Paper

Particulate Trap Selection for Retrofitting Vehicle Fleets Based on Representative Exhaust Temperature Profiles

2001-03-05
2001-01-0187
1 A methodology for correctly matching trap systems to the vehicle types was developed within the scope of a feasibility study to retrofit the entire Swiss fleet of on-road HDV. Representative test vehicles from 11 vehicle categories were equipped with high capacity data loggers during a period of 4-6 weeks. Statistical evaluation of exhaust temperatures indicate that data on averages, peaks and frequency distributions alone can be misleading, because these tend to over-estimate the available exhaust enthalpy. Analysis of dwell time intervals, at certain temperature levels, is a better method to assess the energy available for the regeneration. Such verification of duty cycles is indispensable before retrofitting traps and choosing either active or passive regeneration systems.
Technical Paper

Particle Size Distribution Downstream Traps of Different Design

1995-02-01
950373
High levels of particulate emissions from Diesel engines, in tunnel construction sites, force the aftertreatment of exhaust gases with particulate traps. Sub-micron particulates are suspected to be carcinogenic. Hence, the size distribution of particulates was compared for different particulate trap systems. The two extreme types are the ceramic monolith surface filter and the typical deep-bed filter of knitted fiber. These two types have distinctly different properties. The gravimetric evaluation of both systems show comparable efficiencies around 90%. If, instead, the particle count is evaluated: the efficiency of the surface filter drops below 70%, whereas that of the deep-bed filter increases. The spectral analysis of distinct solid particulates shows that the efficiency of the surface filter deteriorates for particles smaller than 100 nm. The toxicological consequences are disquieting.
Technical Paper

NO2-Formation in Diesel Particle Filter Systems

2013-04-08
2013-01-0526
NO₂ is much more toxic than NO. The average proportion of NO₂ in exhaust gases of vehicles increases significantly due to the use of oxidation catalysts and catalytic coatings in the exhaust gas systems during the last decades combined with generalization of using low sulfur fuels. Diesel oxidation catalysts (DOC) and Pt-containing DPF coatings are widely used to support the regeneration of particle filters, being a source of strongly increased production of NO₂. The present work shows some examples and summarizes the experiences in this matter performed at the Laboratories for IC-Engines & Exhaust Emissions Control (AFHB) of the University of Applied Sciences Biel-Bienne, Switzerland, during some research activities on engine dynamometers in the years 2010-2012.
Technical Paper

Investigations of SDPF -Diesel Particle Filter with SCR Coating for HD-Applications

2015-04-14
2015-01-1023
Diesel exhaust gas aftertreatment systems, which include the selective catalytic reduction (SCR)*) for reduction of NOx are necessary to fulfil the latest legal requirements and are extensively used in the heavy duty (HD) sector. The present paper informs about some results obtained with SCR and with SDPF (a DPF with SCR-coating) on a medium duty research engine Iveco F1C. Beside the limited gaseous emission components NH3, NO2 and N2O were measured. The analysis of nanoparticle emissions was performed with SMPS and CPC. The integration of functions of filtration and NOx-reduction in one element of exhaust aftertreatment system offers several advantages and is widely investigated and considered as a market solution.
Technical Paper

Impact of RME/Diesel Blends on Particle Formation, Particle Filtration and PAH Emissions

2005-04-11
2005-01-1728
Vegetable oils blended to Diesel fuel are becoming popular. Economic, ecological and even political reasons are cited to decrease dependence on mineral oil and improve CO2 balance. The chemical composition of these bio fuels is different from mineral fuel, having less carbon and much more oxygen. Hence, internal combustion of Diesel + RME (Rapeseed Methyl Ester) blends was tested with particular focus on nanoparticle emissions, particle filtration characteristics and PAH-emissions. Fuel economy and emissions of bus engines were investigated in traffic, on a test-rig during standardized cycles, and on the chassis dynamometer. Fuel compositions were varied from standard EN 590 Diesel with <50 ppm sulfur to RME blends of 15, 30, and 50%. Also 100 % RME was tested on the test-rig. Emissions were compared with and without CRT traps. The PAH profiles of PM were determined. Particles were counted and analyzed for size, surface, and composition, using SMPS, PAS, DC and Coulometry.
Technical Paper

Diesel NO/NO2/NOX Emissions - New Experiences and Challenges

2007-04-16
2007-01-0321
During the VERT *) testing of different DPF systems it was remarked, that the oxidation catalyst converts sometimes a big part of NO to NO2, producing on the one hand a more toxic composition of the exhaust gases and causing on the other hand measuring artefacts, which tend to underestimate of NO2 and NOx by the cold NOx - measurement. The present work summarizes the experiences in this matter elaborated at the Laboratories for IC-Engines & Exhaust Emissions Control (AFHB) of the University of Applied Sciences Biel-Bienne, Switzerland, during several VERT activities and didactic projects on engine and chassis dynamometers in the years 2000-2006.
Technical Paper

Diesel Emission with DPF+SCR in VERTdePN - Testing & Potentials

2011-04-12
2011-01-1139
The most efficient way and the best available technology (BAT) to radically reduce the critical diesel emission components particles (PM&NP) and nitric oxides (NOx) are combined exhaust gas aftertreatment systems (DPF+SCR). SCR (selective catalytic reduction) is regarded as the most efficient deNOx-system, diesel particle filters are most efficient for soot abatement. Today, several suppliers offer combined systems for retrofitting of HD vehicles. The presented results are part of the work in the international network project VERT *) dePN (de-activation, de-contamination, disposal of particles and NOx), which has the objectives to establish test procedures and quality standards and to introduce the SCR-, or combined DPF+SCR-systems in the VERT verification procedure.
Video

DPF's Regeneration Procedures and Emissions with RME Blend Fuels

2012-06-18
The fatty acid methyl esters (FAME's) - in Europe mostly RME (Rapeseed methyl ester) - are used in several countries as alternative biogene Diesel fuels in various blending ratios with fossil fuels (Bxx). Questions often arise about the influences of these biocomponents on the modern exhaust aftertreatment systems and especially on the regeneration of Diesel particle filters (DPF). In the present work different regeneration procedures of DPF systems were investigated with biofuels B0, B20 & B100. The tested regeneration procedures were: passive regenerations: DOC + CSF; CSF alone, active regenerations: standstill burner; fuel injections & DOC. During each regeneration on-line measurements of regulated and unregulated emission components (nanoparticles & FTIR) were conducted. It can be stated that the increased portion of RME in fuel provokes longer time periods to charge the filter with soot.
Technical Paper

DPF Systems for High Sulfur Fuels

2011-04-12
2011-01-0605
During the first decade of diesel particle filter development and deployment in cars, trucks, buses and underground sites, DPF regeneration methods were engineered that were compatible with the then prevalent high sulfur content in the fuel ≻ 2000 ppm. The mainly used methods were burners, electrical heaters, replaceable filters and non-precious metal fuel additives. Low sulfur diesel fuel became only available from 1996 in Sweden, 1998 in Switzerland, and after 2000 everywhere in Europe. Thus, the deployment of precious metal catalytic converters was feasible both as original equipment and retrofitting of in-use engines. The so-called CRT particle filters using PGM-catalysis for providing NO₂ for low temperature regeneration became very successful wherever ULSD was available.
Technical Paper

Considerations of Periodical Technical Inspection of Vehicles with deNOx Systems

2019-04-02
2019-01-0744
An independent periodical technical inspection (PTI)*) of vehicles is proposed in the last time as a better prevention against increased emissions of the fleet. Several projects focused on the Diesel vehicles (HD & LD) and on the functionality of the exhaust aftertreatment systems as a key element for lowering emissions of a vehicle or machine. The present paper summarizes the results obtained on 3 modern passenger cars Euro 6b (with EGR, DOC, DPF & SCR) during load jumps, representing the heat-up or cool-down behaviour of the exhaust system. The portable devices for PTI were tested together with the stationary measuring systems of the engine laboratory. In the second part of the report, the present knowledge and proposals of supplementary test procedures (like IUC or PTI) were shortly described.
Technical Paper

Best Available Technology for Emission Reduction of Small 4S-SI-Engines

1999-09-28
1999-01-3338
1 Small off-road 4-stroke SI-engines have extraordinarily high pollutant emissions. These must be curtailed to comply with the new Swiss clean air act LRV 98. The Swiss environmental protection agency (BUWAL) investigated the state of the technology. The aim was a cleaner agricultural walk behind mower with a 10kW 4-stroke SI-engine. Two engine designs were compared: side-valve and OHV. A commercially available 3-way catalytic converter system substantially curtailed emissions: In the ISO 8178 G test-cycle-average, HC was minimized to 8% and CO to 5% of raw emissions. At part load points, the residual emission was < 1%. Simultaneously, fuel consumption improved 10%. Using a special gasoline (Swiss standard SN 181 163), the aromatic hydrocarbons were curtailed, e.g. Benzene < 1%, and fuel consumption further improved. Those results were confirmed in field tests. The engine is approved for retrofitting.
X