Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Vibration Fatigue Analysis of Motorcycle Front Fender

2005-10-12
2005-32-0030
Two wheelers are becoming increasingly popular in India. Competition in this segment has made the product developers to develop the vehicles with short time without compromising durability. Vibration Fatigue Analysis is an advanced technique to evaluate the life of components undergoing vibration, thereby the drastic reduction in durability evaluation time. Front fender is a styling component generally made with plastic material and undergoes vibrations. Therefore, it is very difficult to design the fender based only on static load cases. Vibration fatigue analysis using Finite Element Method (FEM) is used to ensure the durability in design stage itself. Various customer usage modes of the vehicle are considered. Accelerometers and strain gauges are mounted on the fender on appropriate locations. First, the instrumented fender is mounted on the electro dynamic shaker. The fender is excited with sinusoidal inputs.
Technical Paper

Reduction of Durability Evaluation Time for Automotive Components by Development of Generic Solutions

2003-09-16
2003-32-0068
In the recent years, reduction of new product development time is the major challenge for all auto manufacturers to sustain in the stiff competition. Durability evaluation is one of the most time consuming element in New Product Development (NPD) process. Finding a generic solution for commonly faced design issues is a key factor for dramatic reduction in evaluation time. Testing time reduction can be achieved by breaking down the evaluation into subsystem level and component level instead of complete vehicle. But the maximum time reduction can be achieved only through durability evaluation at material / process level. This type of evaluation yields a generic solution, which results in establishing all-purpose design and material selection criteria during initial stage of development. By adopting this technique, separate evaluation of vehicles/ subsystems for improvements in material, welding, process etc. can be avoided.
Technical Paper

Optimum knock sensor location through experimental modal analysis of engine cylinder block

2011-11-08
2011-32-0637
The knock sensor is provided on an engine cylinder block to detect abnormal engine combustion (knocking) and to provide feedback to engine control unit (ECU). The ECU then modifies the engine input and avoids knocking. A commonly used knock sensor is an accelerometer that detects cylinder wall vibration and estimates knocking of the engine. Selecting the location of a knock sensor in many cases involves a challenging trial and error approach that depends upon the measurement of the knock signal at many locations on engine structure. However, a cylinder block exhibits many structural resonances. Thus, a large vibration signal at the surface of cylinder block can be either due to knocking of the engine or due to the resonances of the cylinder block structure because of normal excitation forces. Hence, this conventional method does not always yield reliable results.
Technical Paper

Optimization of Frame Design through Virtual Simulation of Bump Test

2004-09-27
2004-32-0021
Two wheelers are very popular as means of transportation in ASIA. It is also used as load carrier in some places. Chassis frame is a very critical part of a two wheeler taking most of the loads coming from the roads. During the design and development stage, structural integrity of the frame needs to be established. Bump test is one of the critical life tests performed on the vehicle for evaluating the fatigue life of the frame. Normally, three to four iterations take place before frame passes this bump test. This is a time taking test process (1week per iteration) and does not guarantee the end result. In the new approach, the bump test simulation is made using ADAMS software. The ADAMS model is validated by using the axle accelerations measured in the physical bump test. Subsequently, the loads obtained from ADAMS model are used in FEM software and the stresses are predicted. The stress pattern helped in identifying the critical areas.
Technical Paper

Methodology for Accelerated Vibration Durability Test on Electrodynamic Shaker

2006-11-13
2006-32-0081
A methodology is presented to do accelerated vibration durability test, on Electro Dynamic Shaker (EDS) by using Power Spectral Density (PSD) profile based on typical customer usage pattern. A generalized iterative procedure is developed to optimize input excitation PSD profile on EDS for simulating the exact customer usage conditions. The procedure minimizes the error between the target channels measured on road and the response channels measured on EDS. Also, response of accelerometers and strain gauges at multiple locations on the test component are arrived at based on a single input excitation using this procedure. The same is verified experimentally as well. Different parameters like strain, acceleration, etc. are simulated simultaneously. This methodology has enabled successful simulation of road conditions in lab, thereby arriving at a correlation between rig and road. The correlation obtained is based on the simulation of the same failure mode as that of the road on the rig.
Technical Paper

Investigation on Friction Behavior of a Single Cylinder Gasoline Engine

2013-10-15
2013-32-9105
In order to improve the performance and fuel economy of a reciprocating engine, it is important to reduce the overall engine frictional losses. In this paper, author conducts an experimental study on the friction characteristics due to pumping loss, valve-train system, piston assembly, auxiliaries and transmission for a 110cc, single cylinder 4-stroke gasoline engine using frictional strip-down analysis. Friction strip-down method is commonly used to investigate the frictional contribution of various engine elements at high speeds and for better understanding of the make-up of the total engine friction. The engine friction measurements for the particular engine are carried out on a motoring test rig at different engine speeds. In addition, the effect of engine operating parameters such as oil temperature and oil quantity in engine sump is also presented in detail.
Technical Paper

Investigation of In-Cylinder Heat Flux in a Single Cylinder, 4 Stroke, Air Cooled, Spark Ignition Engine for Motorcycle Application

2015-11-17
2015-32-0804
Heat flux measurements can provide much needed insight into the energy flow inside an IC engine, which is the key to optimizing its performance. This paper focuses on understanding the nature of heat flux curve and how it varies with varying load conditions, engine speed, Air fuel ratio and ignition timing in a single cylinder, 4 stroke, carbureted, air cooled, spark ignition engine for motorcycle application. In-cylinder heat flux was monitored along with wall temperature and cylinder pressure for motored operation as well as fired conditions. The difference between the motoring mode and fired mode was analyzed to separate out the effects of combustion. In general, the magnitude of maximum heat flux was found to increase with engine rpm and load when all other engine parameters remained constant. The heat flux was found to increase when a mixture setting closer to the stoichiometric value was used.
Technical Paper

In-Cylinder Flow Analysis in a Two-Stroke Engine - A Comparison of Different Turbulence Models Using CFD

2013-04-08
2013-01-1085
This paper deals with in-cylinder flow field analysis in a motored two-stroke engine by CFD technique using STAR-CD. The main aim of this study is to find out the best turbulence model which predicts the fluid flow field inside the cylinder of a two-stroke engine. In this study, a single-cylinder, two-stroke engine which is very commonly used for two-wheeler application in India is considered. Entire analysis is done at an engine speed of 1500 rev/min. under motoring conditions. Here, three commonly used turbulence models viz. standard k-ε, Chen k-ε and RNG k-ε are considered. In addition, experiments were also conducted on the above engine at the motoring conditions to measure velocity vectors of in-cylinder flow fields using particle image velocimetry (PIV). The results of PIV were also used for validating the CFD predictions.
Technical Paper

Estimation of Wheel Loads using a Mathematical Model and Correlation with Vehicle Measurements on Motorcycles

2007-10-30
2007-32-0096
This paper aims at the estimation of dynamic wheel loads of a two-wheeler through mathematical modeling that will aid during the initial stages of product development. A half car model that represents a two-wheeler was used for this purpose. Road displacements were given as input to the model and the wheel loads estimated. Actual road data obtained from two-poster rig was used as input to the model thereby making it possible to calculate the wheel loads for different customer usage conditions on different roads. In this paper, a severe rough road was chosen for verification of the model with that of the rig as the rider dynamics on such roads are the most difficult to simulate even on the rigs. The estimated values from model were verified with those measured using a two-poster rig for the same road displacement. Attempt has been further made to establish a correlation between the ride comfort predictions from the model and the two-poster rig.
Technical Paper

Durability Improvement for 2-Stroke Forced Air Cooled SI Engine

2014-11-11
2014-32-0113
In recent past, the two stroke vehicle manufacturers are continuously motivated to develop extreme low emission vehicle for meeting the requirements of emissions regulations. To achieve this emission compliance, manufacturers have developed engines with better induction system, improved ignition timings, increased compression ratio (C.R) and larger after-treatment devices. As an effect of above changes, engine operating temperatures are quite high which reduces the block-piston life. Even though, typical two stroke engines are forced cooled engines, there is a lot of potential for optimizing block cooling to reduce maximum liner temperature and block gradient for enhancing block-piston durability. This paper presents an experimental study of various measures to reduce liner temperature for a two stroke, single cylinder 70 c.c. engine used for two wheeler application.
Technical Paper

Development of Generic Load Cases for Motorcycle Components for Design Optimization

2007-10-30
2007-32-0095
A methodology is presented to obtain loads coming on the handle bar of a motorcycle of one model and calculating generic loads from the same for all other motorcycle models. The handle bar of a motorcycle of model M1 was instrumented with strain gages and calibrated for vertical and horizontal loads. The instrumented handle bar was assembled on the vehicle and data was collected on the test rig in laboratory. The vertical and horizontal loads acting on the handle bar, on test rig was obtained based on the calibration performed. The loads thus obtained are for a particular motorcycle model M1 and is dependent on the wheel loads of that motorcycle. These loads were converted into generic load cases, which are applicable for all models of motorcycles. The generalized loads thus generated were used in predicting the fatigue life of handle bar of a different motorcycle model (M2) using FE analysis and MSC fatigue.
Technical Paper

Application of Fatigue Life Prediction Techniques for Optimising the Motorcycle Center Stand

2004-09-27
2004-32-0046
Fatigue life prediction is the most promising technique for drastic reduction of durability evaluation time, which is a critical element in the product development cycle. By using this technique, it is possible to reduce development time and cost, identify failure modes early in the development cycle, and design the component for optimum life. This paper discusses the optimisation of an important two-wheeler component namely, the center stand, using fatigue life prediction techniques. Also, it aims at establishing correlation among various customer usage patterns, accelerated endurance tests, and fatigue life prediction results using both experimental data and finite element (FE) models.
Technical Paper

34 Experimental Analysis of Piston Slap from Small Two-Stroke Gasoline Engine

2002-10-29
2002-32-1803
This project is an experimental investigation and optimization of piston slap noise in small two-stroke gasoline engine. Piston slap is one of the most significant mechanical noise sources in an internal combustion engine. It is a dynamic impact phenomenon between the piston and the cylinder block caused by changes in the lateral forces acting on the piston. The change in cylinder block vibration level caused by the piston impact is considered as a measure of piston slap during this experiment. The intensity of piston slap is measured in terms of vibration level in ‘g’ units, by means of accelerometers mounted on the cylinder block with Top Dead Center (TDC) and Bottom Dead Center (BDC) marker. For the design of low noise engines, all the major parameters, which contribute to piston slap, are listed and the critical four are examined through additional experiments.
X