Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Steering Linkage Induced Vehicle Pull during Straight Line Braking

The vehicle pull (sideways) is a complex outcome of many parameters in an automobile vehicle. This is mainly due to steering, suspension, brake, wheels and chassis parameters. The road conditions like road camber also plays an important role in vehicle pull behavior. All efforts are put in design and manufacturing processes to maintain controlled vehicle pull in normal driving condition. Even though normal vehicle pull seems to be in acceptance limit (subjectively), its intensity increases many folds at the time of harsh braking. In these kind of panic situations where driver firmly holds on the steering wheel, it is expected that the vehicle should stop without deviating too much sideways from its intended straight line path to avoid any kinds of accidents. This work is an outcome of systematic study carried out to understand the root cause of brake pull as a field complaint on current production vehicles and adopting best possible solutions to minimize the brake pull.
Technical Paper

Improving Fuel Economy of Commercial Vehicle by Introducing Optimized Electro-Magnetically Coupled Fan Drive

Increasing fuel cost and constant pressure to maximize the fuel economy are forcing OEMs in India to look for alternate engine cooling mechanism which will minimize the power take off from the engine without affecting the system reliability. Aim of this paper is to analyze the potential benefit of incorporating Electro-magnetic fan (EMF) drive in terms of fuel economy and reduced load on the engine. These benefits were compared with the conventional viscous coupled fan drive system. In vehicle with viscous coupling, fan RPM is based on the ram air temperature at coupling face which takes heat from turbo-charged air and coolant. On the other hand, EMF drive have a separate controller and control the fan RPM based on the coolant temperature enabling itself to respond directly to changes in the heat load as compared to viscous coupling having indirect representation of Coolant/charged air temperature.
Technical Paper

Improvement in Vehicle Handling through Optimization of Steering System Compliance

Recent infrastructural developments and emerging automotive market in India has given an impetus to the transportation industry and has led to high end research activities in synchronization with growing customer demands and competition especially in last decade. Since average speeds in India has gone up from 50 kmph in the year 2000 to almost 100 kmph in 2011, even the Light Commercial Vehicles (5 to 9.6T) are gradually experiencing a shift from low speed to high speed goods carrier. These new age vehicles are developed with a driver centric outlook towards safety and comfort. They are better optimized and equipped to the changing needs of the consumer and road conditions. Increase in vehicle speed poses many challenges in terms of occupant safety and control. In view of this, refinement of different vehicle handling parameters with respect to steering system compliance becomes far more critical.
Technical Paper

Identification of Gear Shift Quality as a Key Attribute in Commercial Vehicle Development

Indian automotive market has grown extremely competitive in the recent past. In order to meet the ever growing expectations of the customers, automobile manufacturers are compelled to offer their products under superior quality with supreme comfort. Customers wish of high levels of tactile comfort in the cabin compartment and effortless operation of peripherals will result in negligible fatigue and a pleasant drive, needs to be duly fulfilled. One has to focus more on Gear shift lever and Steering wheel, which are being the most sensitive tactile points in an automobile. The gear shift lever knob is frequently used and significantly influences the perception of the shift comfort for a driver during actual vehicle application.
Technical Paper

Hydropneumatic Suspension Design for Light Military Tracked Vehicle

In this paper hydropneumatic suspension system design methodology for light military tracked vehicle is discussed in detail. A guide to locate the major impact factor & its effect on the system level design is demonstrated. Spring & damping characteristics of hydropneumatic suspension have significant bearing on the tracked vehicle mobility characteristics. A methodology has been derived to optimize the kinematics of the suspension system by optimizing the load transferring leverage ratio resulting in enhanced system life. The paper also discusses the analytical method used for prediction of spring & damping characteristics and the factors affecting them.
Technical Paper

Design for Cabin Tilting System Employing Single Torsion Bar Using Taguchi Optimization Method

Designing a cabin tilting system for Light Commercial Vehicles using a single torsion bar becomes challenging considering the operator safety and stringent design weight targets. Performance of a good tilting system entirely depends on cabin mass and location of centre of gravity with respect to (w.r.t) to tilting pivot point. Cabin Mass and COG location are very difficult to estimate while designing a new cabin as it is dependent on the maturation of all other cabin aggregates and also the accessories added by the customer. Incorporation design parameter changes like increasing cab tilting angle and increasing torsion bar length, in the later stages of product development, becomes expensive. The objective of this paper is to come up with an optimum design of a single torsion bar tilting employing “Taguchi optimization” for deciding the optimum levels of control factors, which ensures desired performance (i.e tilting effort vs.
Technical Paper

Derivation of Test Schedule for Jerk Test on Manual Gearbox Using Road Load Data

Shock loads/Jerk is a major cause of gearbox failure which occurs during abusive driving condition. In passenger car torque spikes are experienced by the transmission during launch/sudden clutch release events on flat road or off-road. Whereas, in case of commercial vehicle torque spikes are generated while operation in mines and off-road application especially in tipper vehicles. Torque spikes experienced by the gearbox can lead to gear failure, gear slippage and structural failure of housing. Research has been done till now to improve the design of gearbox to address such failures. However, with increased focus on transmission downsizing and improved vehicle performance (by weight reduction and more powerful engine) it is necessary to have optimum design to meet transmission life. This paper discuss the test setup and methodology used to simulate the torque spikes on test bench. To develop the test procedure huge data was collected on commercial vehicles.