Refine Your Search

Topic

Author

Search Results

Technical Paper

“Test Methodology Development for Rig Level Validation of Light Weight Stabilizer Link of EV Bus Suspension”

2024-01-16
2024-26-0357
In the modern and fast growing automotive sector, reliability & durability are two terms of utmost importance along with weight & cost optimization. Therefore it is important to explore new technology which has less weight, low manufacturing cost and better strength. The new technology developed always seek for a quick, cost effective and reliable methodology for its design validation so that any modification can be made by identifying the failures. This paper presents the rig level test methodology to validate and to correlate the CAE derived strain levels, life cycle & failure mode of newly developed light weight stabilizer link for EV Bus suspension
Technical Paper

Virtual Development of Optimum Twist Beam Design Configuration for a New Generation Passenger Car

2007-08-05
2007-01-3562
It is customary to select a twist beam rear suspension for front wheel driven small and medium range passenger cars. Besides better primary / secondary ride comfort, roll stiffness tuning ability, ease of assembly & good packaging solutions than the conventional semi trailing arm/ rigid axle suspensions, twist beam suspension system accentuate the concentration required in placing & orienting the cross beam to achieve certain imperative kinematical characteristics. In order to make the solutions of the required kinematical targets viable, it is vital to have the packaging space and stress concentration within yield limits given the weight & cost targets. This paper presents the work done on twist beam type suspension for a new generation entry level B-Class hatchback vehicle developed. To reduce the time consumed in validation of different design proposals a virtual validation process was developed.
Technical Paper

Tweaking Elastomer by Addition of Nano Silica in Formulation

2024-01-16
2024-26-0197
The art of rubber formulation science always has a scope for fine-tuning with changing the parameters like base polymer grade selection, filler selection, curing system/cross link density, manufacturing methods, and many. Hence forth the filler manufacturer arrived differentiation of the filler already, this paper provides a description of rubber formulation tuning for damped vibration automotive applications. Acicular spiky spherical and hollow spherical nano silica selected as filler. With the thorough knowledge of elastomeric formulation and with doping different new selected silica grades, an optimized DOE was done. New formulation development was focused on isolation characteristics without affecting other necessary properties. The different inputs for finite element calculations was studied with the effects of doping different fillers and also studied the resultant virtual output in damping coefficients.
Journal Article

Study of Frequency Characteristics of Vehicle Motions for the Derivation of Inherent Jerk

2016-04-05
2016-01-1681
Jerk in a vehicle is a feel of user which appears due to sudden acceleration changes. The amplitude and frequency components of the jerk defines quality of an engine or an AMT calibration tuning. Traditional jerk evaluation methods use amplitude (peak) of the jerk as a performance index and its frequencies are either used as weighing factor with amplitude or not taken into account. A method is proposed in this paper to quantify and differentiate the non-acceptable level of jerk which is perceivable to human body. Jerk is obtained by differentiating the acceleration data which contains the frequencies in the lower to higher range. Differentiation of such signal causes an amplification of undesired noise in both analog and digital circuits. This results in significant loss or disturbances in the useful data.
Technical Paper

Structure Borne Noise and Vibration Reduction of a Sports Utility Vehicle by Body-Mount Dynamic Stiffness Optimization

2011-05-17
2011-01-1599
Among the key parameters that decide the success of a vehicle in today's competitive market are quietness of passenger cabin (in respect of both airborne and structure-borne noise) and low levels of disturbing vibration felt by the occupants. To control these values in body-on-frame construction vehicles, it is necessary to identify major transfer paths and optimize the isolation characteristics of the elastomeric mounts placed at several locations between a frame and the enclosed passenger cabin of the vehicle. These body mounts play a dominant role in controlling the structure-borne noise and vibrations at floor and seat rails resulting from engine and driveline excitations, and they are also a vital element in the vehicle ride comfort tuning across a wide frequency range. In the work described in this paper, transfer path tracking was used to identify root cause for the higher noise and vibration levels of a diesel-powered sports utility vehicle.
Technical Paper

Spot Weld Failure Prediction in Safety Simulations Using MAT-240 Material Model in LS-DYNA

2015-01-14
2015-26-0165
Spot welding is the primary joining method used in automobiles. Spot-weld plays a major role to maintain vehicle structural integrity during impact tests. Robust spot weld failure definitions is critical for accurate predictions of structural performance in safety simulations. Spot welds have a complex metallurgical structure, mainly consisting of fusion and heat affected zones. For accurate material property definitions in simulation models, huge number of inputs from test data is required. Multiple tests, using different spot weld joinery configurations, have to be conducted. In order to accurately represent the spot-weld behavior in CAE, detailed modeling is required using fine mesh. The current challenge in spot-weld failure assessment is developing a methodology having a better trade-off between prediction accuracy, testing efforts and computation time. In view of the above, cohesive zone models have been found to be very effective and accurate.
Technical Paper

Simulation and Experimental Analysis In the Induction Gas Dynamics of 2 Cylinder Naturally Aspirated CRDI Diesel Engine

2012-01-09
2012-28-0020
The power output of an internal combustion engine is directly proportional to the amount of air that can be forced into the cylinder per cycle and the amount of fuel that can be burned efficiently. The amount of air is most effectively increased by means of a mechanical supercharger. The purpose of this paper is attempting the non mechanical supercharging ways (Supercharging by means of gas dynamic effects) for naturally aspirated (NA) diesel engines and understanding in a better way the induction gas dynamics and its influence on engine performance characteristics. Wave dynamics in the intake system has strong influence on the performance of naturally aspirated internal combustion (IC) engines. This paper presents an application of Helmholtz resonator in the induction system of the naturally aspirated diesel engine to improve the engine breathing efficiency (volumetric efficiency).
Technical Paper

Review on Laser Welding of High Strength Aluminium Alloy for Automotive Applications

2024-01-16
2024-26-0193
High strength aluminium alloys are an ideal material in the automotive sector leading to a significant weight reduction and enhancement in product safety. In recent past extensive development in the field of high strength steel and aluminium was undertaken. This development has been propelled due to demand for light weight automotive parts. The high strength to weight ratio possessed by Al alloy helps in reducing the total weight of the vehicle without effecting the overall performance, thereby increasing the fuel economy, and reducing the carbon emission level. Joining of high strength aluminium alloy is critical to develop durable automotive products. Joining of high strength aluminium alloy for mass production in automobile industry is a challenging task. Laser welding is recognized as an advanced process to join materials with a laser beam of high-power, high- energy density.
Technical Paper

Reduction of Flow Induced Noise Generated by Power Steering Pump Using Order Analysis

2015-01-14
2015-26-0134
An interior sound quality is one of the major performance attribute, as consumer envisage this as class and luxury of the vehicle. With increasing demand of quietness inside the cabin, car manufactures started focusing on noise refinement and source separation. This demand enforces hydraulic power steering pump to reduce noise like Moan and Whine, especially in silent gasoline engine. To meet these requirements, extensive testing and in-depth analysis of noise data is performed. Structured process is established to isolate noises and feasible solutions are provided considering following analysis. a) Overall airborne noise measurement at driver ear level (DEL) inside the cabin using vehicle interior microphone. b) Airborne and Pressure pulsation test by sweeping pump speed and pressure at test bench. c) Waterfall analysis of pump at hemi anechoic chamber for order tracking and noise determination.
Technical Paper

Radiated Noise Reduction in a Single Cylinder Direct Injection (DI) Naturally Aspirated (NA) Engine

2011-05-17
2011-01-1503
Small goods carrier and passenger vehicles powered by Naturally Aspirated (NA) Direct Injection (DI) diesel engines are popular in Indian automobile market. However, they suffer from inherently high radiated noise and poorly perceived sound quality. This paper documents the steps taken to reduce the radiated noise level from such an engine through structural modifications of major noise radiating components identified in the sound power analysis. The work is summarized as follows; Baseline radiated noise measurements of power train and identification of major noise sources through sound intensity mapping and noise source ranking (NSR) in an Engine Noise Test Cell (ENTC) Design modifications for identified major sources in engine structure Vehicle level assessment of the radiated noise in a Vehicle Semi-Anechoic Chamber (VSAC) for all the design modifications. A reduction of 7 dB at hot idle and 4 - 8 dB in loaded speed sweep conditions was observed with the recommended modifications.
Technical Paper

Powertrain Mounting System NVH Simulation Methodology Using Transfer Path Analysis Technique for Electric Vehicles

2024-01-16
2024-26-0225
In comparison to traditional gasoline-powered vehicles, Electric vehicles (EVs) development and adoption is driven by several factors such as zero emissions, higher performance, cost effective in maintenance, smoother and quieter ride. Global OEMs are competing to provide a reduced in-cab noise for ensuring a smooth and quiet driving experience. Short project timelines for EV demands quick design and development. In initial stages of project, input data availability of EV is limited and a simplified approach is necessary to accelerate the development of vehicle. This paper focuses on simulation methodology for predicting structure borne noise from powertrain deploying Transfer Path Analysis approach. Current simulation methodology involves full vehicle model with multiple flexible bodies and full BIW flexible model which leads to complex modelling and longer simulation times.
Technical Paper

Parametric Study of Hub Cum Brake Drum for Optimum Design Performance

2015-01-14
2015-26-0079
Brake drum is an important component in automotive, which is a link between axle and wheel. It performance is of utmost importance as it is related to the safety of the car as well to the passengers. Many design parameters are taken into consideration while designing the brake drum. The sensitivity of these parameters is studied for optimum design of brake drum. The critical parameters in terms of reliability, safety & durability could be the cross section, thickness of hub, interference & surface roughness between bearing and hub, wheel loading, heat generation on drum, manufacturing and assembly process. The brake drum design is derived by considering these parameters. Hence the sensitivity of these parameters is studied both virtually & physically, in detail. The optimum value of each parameter could be chosen complying each other's values.
Technical Paper

Optimisation of Engine Mounting System for Reduction in Lateral Shake and Drive Away Shudder on Vehicle

2017-06-05
2017-01-1822
In this study we will be discussing two issues related to vibrations which effect car owners. The first one, called lateral shake, can be described as a lateral vibration felt by customer in low speed of around 1200rpm, when vehicle shakes severely in Y-direction. The vibration is significantly felt at the thighs of passengers. A 16DOF rigid body model is established to simulate the power train & body system. The second vibration issue, called drive away shudder (also known as clutch judder/chatter/shudder) is a vibration felt by customers at the time of marching off. The vibration is significantly felt at the time of clutch engagement as a shiver in vehicle. While the common solution of shudder is to optimize clutch friction & engagement, in this study solution has been provided by optimizing the power train mounting system. Clutch shudder is observed on a medium sized car when driven in the range of 10-20 Km/h.
Technical Paper

One Dimensional (1-D) Simulation Model for Ride and Comfort Evaluation of a Two Axle Truck

2024-01-16
2024-26-0299
In automotive industry, testing and validation teams are highly dependent on availability of prototype vehicles for testing and evaluation of ride & comfort behavior of vehicles. Special test tracks surfaces are also used (namely Tar road, Express way and driving over a Cleat) to evaluate the ride & comfort through subjective evaluation. Ride is largely affected by transmissibility of road excitations to the driver and other occupant’s seats, influence of suspension, bushes and tire are the major contributors in the transfer path of vibrations. A configurable 1–D simulation model of a Two Axle Truck is developed for quick evaluation of the ride & comfort behavior which is need of the hour for the testing team in optimizing the number of iterations in physical testing. These simulations will help in understanding the ride & comfort behavior and its sensitivity to changes in the component’s characteristics in absence of physical test vehicles.
Technical Paper

Numerical Approach to Welding Process and its Integration in Assessment of Fatigue life of Component

2021-09-22
2021-26-0357
Welding is one of the most convenient and extensively used manufacturing process across every industry and is recognized as a cost effective joining technique. The root cause of most of the fabricated structural failures lies in the uncertainties associated with the welding process. It is prone to generate high residual stresses due to non-volumetric changes during heating and cooling cycle. These residual stresses have a significant impact on fatigue life of component leading to poor quality joints. To alleviate these effects, designers and process engineers rely upon their experience and thumb rules but has its own limitations. This approach often leads to conservative designs and pre-mature failures. Recent advances in computational simulation techniques provide us opportunity to explore the complex phenomenon and generate deep insights. The paper demonstrates the methodology to evaluate the residual stresses due to welding in virtual environment.
Technical Paper

New Pass-by Noise Regulatory Norms IS 3028:2023 (Part 2) - an Analysis of Acceleration and Noise Source Contribution

2024-01-16
2024-26-0199
Worldwide automotive sector regulatory norms have changed and become more stringent and complex to control environmental noise and air pollution. To continue this trend, the Indian Ministry of Road Transport is going to impose new vehicle exterior pass-by noise regulatory norms IS 3028:2023 (Part2) to control urban area noise pollution. This paper studies the synthesis of M1 category vehicle driving acceleration, dominant noise source, and frequency contribution in exterior PBN level. A vehicle acceleration analysis study was carried out to achieve an optimized pass by noise (PBN) level based on the vehicle’s PMR ratio, reference, and measured test acceleration data. Based on the analysis, test gear strategy was decided to achieve a lower PBN level. This strategy involved increasing the effective final drive ratio and optimizing engine calibration, resulting in improvement with acceleration in the ith gear.
Technical Paper

Methodology Development to Accurately Predict Aerodynamic Drag and Lift for Passenger Vehicles Using CFD.

2016-04-05
2016-01-1600
Important vehicle performance parameters such as, fuel economy and high speed stability are directly influenced by its aerodynamic drag and lift. Wind tunnel testing to asses these parameters requires heavy investment especially when test wind tunnel is not available in the country where vehicle development center is present. Hence to save cost and to compress development time, it is essential to asses and optimize parameters of a vehicle in very early stages of development. Using numerical flow simulations optimization runs can be carried out digitally. Industry demands prediction of aerodynamic drag and lift coefficients (CD,CL) within an accuracy of a few counts, consuming minimal HPC resources and in a short turnaround time. Different OEMs deploy different testing methods and different softwares for numerical simulations.
Technical Paper

Method of Generating Real-Time Digital Customer Feedback Loop for Connected Vehicle Applications

2024-01-16
2024-26-0258
This paper focuses on developing an application to extract insights from Android app reviews of Connected Car Applications and Twitter conversations related to OEM’ PV & EV Vehicles and features. Analyzing user sentiments and preferences in real-time can drive innovation and elevate OEMs' customer satisfaction. These insights have the potential to enhance vehicle performance and the manufacturing process. The application employs data collection and Natural Language Processing (NLP) techniques, including User-Driven Sentiment Classification and topic modeling, to analyze user sentiments and identify key discussion topics visually.
Technical Paper

Lubrication Evaluation of EV Transmission

2024-01-16
2024-26-0328
Advent of EV powertrain has considerable effect on transmission development activities as competed to regular ICE transmission. Conventional ICE transmission and the transmission for an e-powertrain differ on fundamental level. The conventional transmission has number of gear ratios, shift mechanism which enables the transmission to deliver a smooth power output as per demand from the driver. Whereas the e-powertrain transmission is mostly a single gear ratio transmission (reducer) which primarily depends on speed and torque variation from the motor to cater the driver requirement. Hence, the operating speeds of such e-transmissions can vary from 0 to 20000 rpm in both forward and reverse directions. Such a large speed variation as compared with conventional transmission calls for special attention towards the lubrication of internal components. High speeds and lower oil viscosities tend to disrupt the oil films in between contact surfaces causing metal to metal contact.
Technical Paper

Investigation on the Effect of Design Feature on Acoustic Performance of Exhaust Muffler for Vehicle

2022-12-23
2022-28-0488
Primarily, Acoustic performance of muffler are evaluated by insertion loss (IL) and backpressure/restriction. Where Insertion loss is mainly depends upon proper selection of muffler volume, which is proportional to Engine Swept volume, along with internal design configuration, which drives the acoustic principle. Same time, meeting the vehicle level pass by noise (PBN) value as per regulatory norms and system level backpressure as per engine specification sheet are the key evaluating criteria of any good exhaust system. Here, a new Reactive/Reflective type muffler of tiny size have been designed for heavy commercial vehicle application, which is unique in shape and innovative to meet desire performance. In this design, mainly sudden expansion, sudden contraction, flow through perforation and bell-mouth flow phenomenon are used.
X