Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

LES and RNG Turbulence Modeling in DI Diesel Engines

2003-03-03
2003-01-1069
The one-equation subgrid scale model for the Large Eddy Simulation (LES) turbulence model has been compared to the popular k-ε RNG turbulence model in very different sized direct injection diesel engines. The cylinder diameters of these engines range between 111 and 200 mm. This has been an initial attempt to study the effect of LES in diesel engines without any modification to the combustion model being used in its Reynolds-averaged Navier-Stokes (RANS) form. Despite some deficiencies in the current LES model being used, it already gave much more structured flow field with approximately the same kind of accuracy in the cylinder pressure predictions than the k-ε RNG turbulence model.
Technical Paper

In-Cylinder Flow Field of a Diesel Engine

2007-10-29
2007-01-4046
The flow through the valves of an engine cylinder head is very complex in nature due to very high gas velocities and strong flow separation. However, it is also the typical situation in almost every engine related flow. In order to gain better understanding of the flow features after the cylinder head, and to gain knowledge of the performance level that can be expected from CFD analysis, flow field measurements and computations were made in an engine rig. Particle image velocimetry (PIV) and paddle wheel measurements have been conducted in a static heavy-duty diesel engine rig to characterize the flow features with different valve lifts and pressure differences. These measurements were compared with CFD predictions of the same engine. The simulations were done with the standard k-ε turbulence model and with the RNG turbulence model using the Star-CD flow solver.
X