Refine Your Search

Topic

Author

Search Results

Technical Paper

Towards Robust H-infinity Control of an SI Engine's Air/Fuel Ratio

1999-03-01
1999-01-0854
Long term stoichiometric Air/Fuel Ratio (AFR) control of an SI engine is at the present mainly maintained by table mapping of the engine's fresh air intake as a function of the engine operating point. In order to reduce a stationary error in the AFR to zero the table based control normally works in conjunction with a PI feedback from a HEGO sensor. The effective bandwidth of this feedback loop is quite small and seldom exceeds 2 Hz. This is altogether too small for accurate transient AFR control. This paper presents a new λ (normalized Air/Fuel Ratio) control methodology (H∞ control) which has a somewhat larger bandwidth and can guarantee robustness with respect to selected engine variable and parameter variations.
Technical Paper

Thermal Loading in SiC Particle Filters

1995-02-01
950151
Silicon Carbide (SiC) has been shown to have a high melting/decomposition temperature, good mechanical strength, and high thermal conductivity, which make it well suited for use as a material for diesel particulate filters. The high thermal conductivity of the material tends to reduce the temperature gradients and maximum temperature which arise during regeneration. The purpose of this paper is to experimentally investigate the thermal loading which arise under regenerations of varying severity. An experimental study is presented, in which regenerations of varying severity are conducted for uncoated SiC and Cordierite filters. The severity is varied through changes in the particle loading on the filters and by changing the flow conditions during the regeneration process itself. Temperature distributions throughout the filters are measured during these regeneration.
Technical Paper

The Simulation of Single Cylinder Intake and Exhaust Systems

1967-02-01
670478
A detailed description of a numerical method for computing unsteady flows in engine intake and exhaust systems is given. The calculations include the effects of heat transfer and friction. The inclusion of such calculations in a mathematically simulated engine cycle is discussed and results shown for several systems. In particular, the effects of bell-mouth versus plain pipe terminations and the effects of a finite surge tank are calculated. Experimental data on the effect of heat transfer from the back of the intake valve on wave damping are given and show the effect to be negligible. Experimental data on wave damping during the valve closed period and on the temperature rise of the air near the valve are also given.
Technical Paper

The Radiant and Convective Components of Diesel Engine Heat Transfer

1963-01-01
630148
The ratio of two temperature gradients across the combustion-chamber wall in a diesel engine is used to provide a heat flow ratio showing the radiant heat transfer as a per cent of local total heat transfer. The temperature gradients were obtained with a thermocouple junction on each side of the combustion-chamber wall. The first temperature gradient was obtained by covering the thermocouple at the cylinder gas-wall interface with a thin sapphire window, while the second was obtained without the window. Results show that the time-average radiant heat transfer is of significant magnitude in a diesel engine, and is probably even more significant in heat transfer during combustion and expansion.
Technical Paper

The Effect of Injection Pressure on Air Entrainment into Transient Diesel Sprays

1999-03-01
1999-01-0523
The objective of this research was to investigate the effect of injection pressure on air entrainment into transient diesel sprays. The main application of interest was the direct injection diesel engine. Particle Image Velocimetry was used to make measurements of the air entrainment velocities into a spray plume as a function of time and space. A hydraulically actuated, electronically controlled unit injector (HEUI) system was used to supply the fuel into a pressurized spray chamber. The gas chamber density was maintained at 27 kg/m3. The injection pressures that were studied in this current research project were 117.6 MPa and 132.3 MPa. For different injection pressures, during the initial two-thirds of the spray plume there was little difference in the velocities normal to the spray surface. For the last third of the spray plume, the normal velocities were 125% higher for the high injection pressure case.
Technical Paper

The Detection of Visual Distraction using Vehicle and Driver-Based Sensors

2016-04-05
2016-01-0114
Distracted driving remains a serious risk to motorists in the US and worldwide. Over 3,000 people were killed in 2013 in the US because of distracted driving; and over 420,000 people were injured. A system that can accurately detect distracted driving would potentially be able to alert drivers, bringing their attention back to the primary driving task and potentially saving lives. This paper documents an effort to develop an algorithm that can detect visual distraction using vehicle-based sensor signals such as steering wheel inputs and lane position. Additionally, the vehicle-based algorithm is compared with a version that includes driving-based signals in the form of head tracking data. The algorithms were developed using machine learning techniques and combine a Random Forest model for instantaneous detection with a Hidden Markov model for time series predictions.
Technical Paper

Steady State Investigations of DPF Soot Burn Rates and DPF Modeling

2011-09-11
2011-24-0181
This work presents the experimental investigation of Diesel Particulate Filter (DPF) regeneration and a calibration procedure of a 1D DPF simulation model based on the commercial software AVL BOOST v. 5.1. Model constants and parameters are fitted on the basis of a number of steady state DPF experiments where the DPF is exposed to real engine exhaust gas in a test bed. The DPF is a silicon carbide filter of the wall flow type without a catalytic coating. A key task concerning the DPF model calibration is to perform accurate DPF experiments because measured gas concentrations, temperatures and soot mass concentrations are used as model boundary conditions. An in-house-developed raw exhaust gas sampling technique is used to measure the soot concentration upstream the DPF which is also needed to find the DPF soot burn rate.
Technical Paper

Soot Formation Modeling of n-dodecane and Diesel Sprays under Engine-Like Conditions

2015-09-06
2015-24-2468
This work concerns the modelling of soot formation process in diesel spray combustion under engine-like conditions. The key aim is to investigate the soot formation characteristics at different ambient temperatures. Prior to simulating the diesel combustion, numerical models including a revised multi-step soot model is validated by comparing to the experimental data of n-dodecane fuel in which the associated chemistry is better understood. In the diesel spray simulations, a single component n-heptane mechanism and the multi-component Diesel Oil Surrogate (DOS) model are adopted. A newly developed C16-based model which comprises skeletal mechanisms of n-hexadecane, heptamethylnonane, cyclohexane and toluene is also implemented. Comparisons of the results show that the simulated liftoff lengths are reasonably well-matched to the experimental measurement, where the relative differences are retained to below 18%.
Technical Paper

Simulation of a Crankcase Scavenged, Two-Stroke, SI Engine and Comparisons with Experimental Data

1969-02-01
690135
A detailed mathematical model of the thermodynamic events of a crankcase scavenged, two-stroke, SI engine is described. The engine is divided into three thermodynamic systems: the cylinder gases, the crankcase gases, and the inlet system gases. Energy balances, mass continuity equations, the ideal gas law, and thermodynamic property relationships are combined to give a set of coupled ordinary differential equations which describe the thermodynamic states encountered by the systems of the engine during one cycle of operation. A computer program is used to integrate the equations, starting with estimated initial thermodynamic conditions and estimated metal surface temperatures. The program iterates the cycle, adjusting the initial estimates, until the final conditions agree with the beginning conditions, that is, until a cycle results.
Technical Paper

SiC as a Substrate for Diesel Particulate Filters

1993-09-01
932495
Many of the materials which have been developed for use as particle filters in the exhaust of diesel engines have characteristics which give rise to significant problems in practical use. Due to its special characteristics, it is shown that SiC is very well suited for use as the base material for particulate filters. The physical and thermal properties of porous SiC substrate material as applied to diesel particulate filters have been determined and are presented. Experimental results from several types of filter regeneration processes in exhaust gas systems confirm the improvements in the area of thermal load and reduction in temperature level during regeneration. The reduction in temperature during regeneration is shown to be consistent with the high thermal conductivity of SiC.
Technical Paper

Pressure-Based Knock Measurement Issues

2017-03-28
2017-01-0668
Highly time resolved measurements of cylinder pressure acquired simultaneously from three transducers were used to investigate the nature of knocking combustion and to identify biases that the pressure measurements induce. It was shown by investigating the magnitude squared coherence (MSC) between the transducer signals that frequency content above approximately 40 kHz does not originate from a common source, i.e., it originates from noise sources. The major source of noise at higher frequency is the natural frequency of the transducer that is excited by the impulsive knock event; even if the natural frequency is above the sampling frequency it can affect the measurements by aliasing. The MSC analysis suggests that 40 kHz is the appropriate cutoff frequency for low-pass filtering the pressure signal. Knowing this, one can isolate the knock event from noise more accurately.
Technical Paper

Predicting the Port Air Mass Flow of SI Engines in Air/Fuel Ratio Control Applications

2000-03-06
2000-01-0260
With the tightening of exhaust emission standards, wide bandwidth control of the air/fuel ratio (AFR) of spark ignition engines has attracted increased interest recently. Unfortunately, time delays associated with engine operation (mainly injection delays and transport delays from intake to exhaust) impose serious limitations to the achievable control bandwidth. With a proper choice of sensors and actuators, these limitations can be minimized provided the port air mass flow can be accurately predicted ahead in time. While the main objective of this work is to propose a complete AFR controller, the main focus is on the problems associated with port air mass flow prediction.
Technical Paper

Portable Power from Nonportable Energy Sources

1963-01-01
630470
To meet future world energy demands, the engineer’s task will be to develop, through research, means of supplying new sources of energy. Though nuclear processes and solar energy will provide future energy, they are not readily adaptable to portable power systems due to inherent shortcomings. Energy can be supplied to portable power systems by energy storage systems using chemical, mechanical, or electrical forms, or it may be supplied through energy-in-transit systems. Technical discussion of various systems is presented. To develop suitable energy storage systems, thought must be given to problems of construction, operation, maintenance, and economics. Research is necessary to determine which chemical fuels are most adaptable for internal combustion engines.
Technical Paper

Performance and Emissions of a 0.273 Liter Direct Injection Diesel Engine Fuelled with Neat Dimethyl Ether

1995-02-01
950064
An experimental study is presented in which the use of neat dimethyl ether (DME) in a small non-turbo-charged diesel engine is demonstrated. It was found that with only minor fuel system modifications, DME gave very satisfactory combustion, performance and emissions. Engine operation with thermal efficiency equivalent to diesel fuel was achieved with much lower NOx emissions and with extremely low smoke and less engine noise. Additional NO, reductions were obtained by the use of EGR, without visible smoke and without deterioration in thermal efficiency, A limited durability study showed that the diesel fuel injection pump could operate on DME for more than 500 hours. A comparison of pure and technical grade DME was conducted.
Journal Article

On the Accuracy of Dissipation Scale Measurements in IC Engines

2014-04-01
2014-01-1175
The effects of imaging system resolution and laser sheet thickness on the measurement of the Batchelor scale were investigated in a single-cylinder optical engine. The Batchelor scale was determined by fitting a model spectrum to the dissipation spectrum that was obtained from fuel tracer planar laser-induced fluorescence (PLIF) images of the in-cylinder scalar field. The imaging system resolution was quantified by measuring the step-response function; the scanning knife edge technique was used to measure the 10-90% clip width of the laser sheet. In these experiments, the spatial resolution varied from a native resolution of 32.0 μm to 137.4 μm, and the laser sheet thickness ranged from 108 μm to 707 μm. Thus, the overall resolution of the imaging system was made to vary by approximately a factor of four in the in-plane dimension and a factor of six in the out-of-plane dimension.
Technical Paper

Numerical Study of the Scavenging Process in a Large Two-Stroke Marine Engine Using URANS and LES Turbulence Models

2020-09-15
2020-01-2012
A computational fluid dynamics study of the scavenging process in a large two-stroke marine engine is presented in this work. Scavenging which is one of the key processes in the two-stroke marine engines, has a direct effect on fuel economy and emissions. This process is responsible for fresh air delivery, removing the combustion products from the cylinder, cooling the combustion chamber surfaces and providing a swirling flow for better air-fuel mixing. Therefore, having a better understanding of this process and the associated flow pattern is crucial. This is not achievable solely by experimental tests for large engines during engine operation due to the difficulties of measuring the flow field inside the cylinder. In this study, the axial and tangential velocities are compared and validated with the experimental results obtained from Particle Image Velocimetry (PIV) tests [1].
Technical Paper

Novel base metal-palladium catalytic diesel filter coating with NO2 reducing properties

2007-07-23
2007-01-1921
A novel base metal-palladium catalytic coating was applied on commercial silicon carbide wall flow diesel filters and tested in an engine test bench. This catalytic coating limits the NO2 formation and even removes NO2 within a wide temperature range. Soot combustion, HC conversion and CO conversion properties are comparable to current platinum-based coatings, but at a lower cost. This paper compares the results from engine bench tests of present commercial solutions as regards NO2-, HC-, CO-removal and soot combustion with the novel coating. Furthermore, emission test results from base metal-palladium coated diesel particulate filters installed on operating taxis and related test cycle data are presented. A significant reduction in NO2 emission compared to present technology is measured.
Technical Paper

Mutagenic Activity of the Soluble Organic Fraction of Exhaust Gas Particulate from a Direct Injection Diesel Engine

1996-10-01
961977
The main purpose of this study was to investigate the influence of diesel engine conditions on the mutagenic activity of the exhaust. Special emphasis was put on investigation of the influence of nitrogen oxides content. Experiments with a diesel engine have been carried out in the laboratory and the emissions of carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and particulate matter (PM) have been measured at different engine conditions. The particulate matter was extracted in order to obtain the soluble organic fraction (SOF), and this fraction was analyzed for mutagenic activity in the Salmonella/microsome assay (AMES test). It was found that the mutagenic activity evidently depended on the PAH content (PAH = Polycyclic Aromatic Hydrocarbons) of the exhaust gas rather than the NOx content. However, the percentage of the direct mutagenic activity of the total mutagenic activity increased as the NOx content in the exhaust gas increased.
Journal Article

Multi-Dimensional Modeling of the Soot Deposition Mechanism in Diesel Particulate Filters

2008-04-14
2008-01-0444
A computational, three-dimensional approach to investigate the behavior of diesel soot particles in the micro-channels of wall-flow Diesel Particulate Filters is presented. The KIVA3V CFD code, already extended to solve the 2D conservation equations for porous media materials [1], has been enhanced to solve in 2-D and 3-D the governing equations for reacting and compressible flows through porous media in non axes-symmetric geometries. With respect to previous work [1], a different mathematical approach has been followed in the implementation of the numerical solver for porous media, in order to achieve a faster convergency as source terms were added to the governing equations. The Darcy pressure drop has been included in the Navier-Stokes equations and the energy equation has been extended to account for the thermal exchange between the gas flow and the porous wall.
Technical Paper

Modelling of the Intake Manifold Filling Dynamics

1996-02-01
960037
Mean Value Engine Models (MVEMs) are dynamic models which describe dynamic engine variable (or state) responses as mean rather than instantaneous values on time scales slightly longer than an engine event. Such engine variables are the independent variables in nonlinear differential (or state) equations which can be quite compact but nevertheless quite accurate. One of the most important of the differential equations for a spark ignition (SI) engine is the intake manifold filling (often manifold pressure) state equation. This equation is commonly used to estimate the air mass flow to an SI engine during fast throttle angle transients to insure proper engine fueling. The purpose of this paper is to derive a modified manifold pressure state equation which is simpler and more physical than those currently found in the literature. This new formulation makes it easier to calibrate a MVEM for different engines and provides new insights into dynamic SI engine operation.
X