Refine Your Search


Search Results

Technical Paper

Virtual Test of Injector Design Using CFD

Diesel exhaust aftertreatment solutions using injection, such as urea-based SCR and lean NOx trap systems, effectively reduce the emission NOx level in various light vehicles, commercial vehicles, and industrial applications. The performance of the injector plays an important role in successfully utilizing this type of technology, and the CFD tool provides not only a time and cost-saving, but also a reliable solution for extensively design iterations for optimizing the injector internal nozzle flow design. Inspired by this fact, a virtual test methodology on injector dosing rate utilizing CFD was proposed for the design process of injector internal nozzle flows.
Technical Paper

Transient Performance of an HC LNC Aftertreatment System Applying Ethanol as the Reductant

As emissions regulations around the world become more stringent, emerging markets are seeking alternative strategies that align with local infrastructures and conditions. A Lean NOx Catalyst (LNC) is developed that achieves up to 60% NOx reduction with ULSD as its reductant and ≻95% with ethanol-based fuel reductants. Opportunities exist in countries that already have an ethanol-based fuel infrastructure, such as Brazil, improving emissions reduction penetration rates without costs and complexities of establishing urea infrastructures. The LNC performance competes with urea SCR NOx reduction, catalyst volume, reductant consumption, and cost, plus it is proven to be durable, passing stationary test cycles and adequately recovering from sulfur poisoning. Controls are developed and applied on a 7.2L engine, an inline 6-cylinder non-EGR turbo diesel.
Technical Paper

The Role of CFD Combustion Simulation in Diesel Burner Development

Diesel burners introduce combustion of diesel fuel to raise exhaust gas temperature to Diesel Oxidization Catalyst (DOC) light-off or Diesel Particulate Filter (DPF) regeneration conditions, thereby eliminating the need of engine measures such as post-injections. Such diesel combustion requirement nevertheless poses challenges to burner development especially in combustion control and risk mitigation of DPF material failure. In particular, burner design must satisfy good soot distribution and heat distribution at DPF front face after meeting minimum requirements of ignition, heat release, and backpressure. In burner development, Computational Fluid Dynamics (CFD) models have been developed based on commercial codes for burner thermal and flow management with capability of predicting comprehensive physical and chemical phenomena including turbulence induced mixing, fuel injection, fuel droplet transport, diesel combustion, radiation, conjugate heat transfer and etc.
Technical Paper

Temperature Effect in Exhaust System Fatigue Life Prediction

Automotive exhaust system experiences vibratory and thermal loads. Bogey test had been the major validation method until recent years when the strain-life approach was adopted to evaluate component's fatigue life. In practice, when using the strain-life model to evaluate a component subjected to elevated temperature, temperature effect on component fatigue life is considered by introducing a temperature scale factor KC that is used to scale up the measured nominal strain, hence the mechanical load. This paper intends to propose a method to estimate KC by designing component bench tests at room temperature and at elevated temperature, respectively. Two major failure modes in the exhaust system are investigated and different temperature effects on the base metal fatigue and on the weld or heat-affected zone are analyzed.
Journal Article

Probabilistic Life and Damage Assessment of Components under Fatigue Loading

This study presents a probabilistic life (failure) and damage assessment approach for components under general fatigue loadings, including constant amplitude loading, step-stress loading, and variable amplitude loading. The approach consists of two parts: (1) an empirical probabilistic distribution obtained by fitting the fatigue failure data at various stress range levels, and (2) an inverse technique, which transforms the probabilistic life distribution to the probabilistic damage distribution at any applied cycle. With this approach, closed-form solutions of damage as function of the applied cycle can be obtained for constant amplitude loading. Under step-stress and variable amplitude loadings, the damage distribution at any cycle can be calculated based on the accumulative damage model in a cycle-by-cycle manner. For Gaussian-type random loading, a cycle-by-cycle equivalent, but a much simpler closed-form solution can be derived.
Technical Paper

Probabilistic Isothermal, Anisothermal, and High-Temperature Thermo-Mechanical Fatigue Life Assessment and CAE Implementations

Fatigue life assessment is an integral part of the durability and reliability evaluation process of vehicle exhaust components and systems. The probabilistic life assessment approaches, including analytical, experimental, and simulation, CAE implementation in particular, are attracting significant attentions in recent years. In this paper, the state-of-the-art probabilistic life assessment methods for vehicle exhausts under combined thermal and mechanical loadings are reviewed and investigated. The loading cases as experienced by the vehicle exhausts are first categorized into isothermal fatigue, anisothermal fatigue, and high-temperature thermomechanical fatigue (TMF) based on the failure mechanisms. Subsequently, the probabilistic life assessment procedures for each category are delineated, with emphasis on product validation.
Technical Paper

Potential Failure Modes and Accelerating Test Strategy of Burner

Driven by diesel engine emission regulation, more emission aftertretment products have been under development by Tenneco to address the Particular Matter (PM) and NOx reduction needs. The T.R.U.E. (Thermal Regeneration Unit for Exhaust) Clean active thermal management system is one of the examples to reduce PM. The system is designed to increase exhaust temperatures for DPF (Diesel Particulate Filter) regeneration. This product is exposed to high temperature and high oxidation. Therefore, thermal fatigue, creep, oxidation and the interaction become critical mechanism to be considered for its durability. One of the key challenges to validate this product is to find a way of accelerated testing for thermal, creep, and oxidation as well as for vibration. In this paper, accelerated durability test strategy for high temperature device like T.R.U.E Clean is addressed.
Technical Paper

Optimization of a Urea SCR System for On-Highway Truck Applications

In order to satisfy tightening global emissions regulations, diesel truck manufacturers are striving to meet increasingly stringent Oxides of Nitrogen (NOx) reduction standards. The majority of heavy duty diesel trucks have integrated urea SCR NOx abatement strategies. To this end, aftertreatment systems need to be properly engineered to achieve high conversion efficiencies. A EuroV intent urea SCR system is evaluated and failed to meet NOx conversion targets with severe urea deposit formation. Systematic enhancements of the design have been performed to enable it to meet targets, including emission reduction efficiency via improved reagent mixing, evaporation, distribution, back pressure, and removing of urea deposits. Multiple urea mixers, injector mounting positions and various system layouts are developed and evaluated, including both CFD analysis and full scale laboratory tests.
Technical Paper

Modeling of Close-Coupled SCR Concepts to Meet Future Cold Start Requirements for Heavy-Duty Engines

The low-NOx standard for heavy-duty trucks proposed by the California Air Resources Board will require rapid warm-up of the aftertreatment system (ATS). Several different aftertreatment architectures and technologies, all based on selective catalytic reduction (SCR), are being considered to meet this need. One of these architectures, the close-coupled SCR (ccSCR), was evaluated in this study using two different physics-based, 1D models; the simulations focused on the first 300 seconds of the cold-start Federal Test Procedure (FTP). The first model, describing a real, EuroVI-compliant engine equipped with series turbochargers, was used to evaluate a ccSCR located either i) immediately downstream of the low-pressure turbine, ii) in between the two turbines, or iii) in a by-pass around the high pressure turbine.
Technical Paper

Modal Transient FEA Study to Simulate Exhaust System Road Load Test

Durability life is one of the major concerns in the automotive industry. Road Load Data Acquisition (RLDA) is one of the most important steps to verify exhaust system durability performance. RLDA will not only provide data for system level rig testing drive file development but also for exhaust components validation (computing safety factors). Modal transient FEA can be utilized to simulate either vehicle durability testing or sub-system level rig testing. How to simulate correctly is critical in the simulation. One of the most challenging portions in the full exhaust system simulation is isolator modeling due to its non-linear characteristics. However, we have to use linear modeling to simulate isolator in modal transient analysis, which induces errors.
Technical Paper

Low Temperature SCR Catalysts Optimized for Cold-Start and Low-Load Engine Exhaust Conditions

The main objective of this work is to develop a low-temperature SCR catalyst for the reduction of nitrogen oxides at cold start, low-idle and low-load conditions. A series of metal oxide- incorporated beta zeolite catalysts were prepared by adopting incipient wetness technique, cation-exchange, deposition-precipitation and other synthesis techniques. The resulting catalysts were characterized and tested for reduction of NOx in a fixed bed continuous flow quartz micro-reactor using ammonia as the reductant gas. Initial catalyst formulations have been exhibited good NOx reduction activity at low-temperatures. These catalyst formulations showed a maximum NOx conversion in the temperature range of 100 - 350°C. Besides, more experiments were performed with the aim of optimizing these formulations with respect to the metal atomic ratio, preparation method, active components and supported metal type.
Technical Paper

Investigation of Urea Deposits in Urea SCR Systems for Medium and Heavy Duty Trucks

With increasing applications of urea SCR for NOx emission reduction, improving the system performance and durability has become a high priority. A typical urea SCR system includes a urea injector, injector housing, mixer, and appropriate pipe configurations to allow continuous urea injection into the exhaust stream and evaporation of urea solution into gaseous products. Continuous operation at various conditions with high NOx reduction is possible, but one problem that threatens the life and performance of these systems is urea deposit. When urea or its byproducts become deposited on the inner surfaces of the system including walls, mixers, injector housings and substrates it can create concerns of backpressure and material deteriorations. In addition, deposits as a waste of reagents can negatively affect engine operation, emissions performance and DEF economy. Urea deposit behavior is explored in terms of heat transfer, pipe geometry, injector layout and mixing mechanisms.
Technical Paper

Integration of Diesel Burner for Large Engine Aftertreatment using CFD

Diesel burners recently have been used in Diesel Particulate Filter (DPF) regeneration process, in which the exhaust gas temperature is raised through the combustion process to burn off the soot particles. The feasibility of such process using the burner in large diesel applications is investigated along with a mixer and DPF. For such applications, only partial flow of the exhaust stream is fed into the burner and the resulting hot flow from combustion process is then mixed with the rest of the main stream. The amount of flow into the burner plays a vital role in overall system performance as it determines the amount of hot gas needed for Diesel Oxidation Catalyst (DOC) light-off (to facilitate DPF regeneration) and also oxygen amount needed for secondary combustion. A passive valve plate design is proposed for such flow split applications for the burner.
Technical Paper

Hydraulically Damped Rubber Body Mounts with High Lateral Rate for Improved Vehicle Noise, Vibration and Ride Qualities

In today's competitive market, noise and vibration are among the most important parameters that impact the success of a vehicle. In body-on-frame construction vehicles, elastomeric body mounts play a major role in isolating the passenger compartment from road noise, harshness, shake, and other vibrations in the chassis as well as improving ride quality across a wide frequency range. This paper describes the work carried out to design a fluid filled mount with high lateral stiffness that can alter the perceived Noise, Vibration and Harshness (NVH) performance of current production body-on-frame trucks. It was found that the quietness and ride qualities can be significantly improved by positioning the glycol-filled mounts at the anti-node of the frame first vertical bending mode; under the C-pillar intersection with the frame. The performance of mounts in this area is known to be critical to ride quality.
Journal Article

Fatigue Life and Non-Linear Strength Predictions for Heavy Stamping Steel Parts

Strength and fatigue life prediction is very difficult for stamped structural steel parts because the manufacturing process alters the localized material properties. Traditional tensile tests cannot be used to obtain material properties due to size limitations. Because of this, FEA predictions are most often “directional” at best. In this paper an improved prediction methodology is suggested. With a material library developed from standard homogenous test specimens, or even textbook material property tables, localized strength and plastic strain numbers can be inferred from localized hardness tests(1). The new method, using standard ABAQUS static analysis (not commercial fatigue analysis software with many unknowns), is shown to be very accurate. This paper compares the new process FEA strength and fatigue life predictions to laboratory test results using statistical confidence intervals.
Technical Paper

Fatigue Design Curve Construction for Test Data with Linear/Linearized and Universal Slope Characteristics

Fatigue testing and related fatigue life assessment are essential parts of the design and validation processes of vehicle components and systems. Fatigue bench test is one of the most important testing methods for durability and reliability assessment, and its primary function is to construct design curves based on a certain amount of repeated tests, with which recommendations on product design can be advised. How to increase the accuracy of predictions from test results, the associated life assessment, and to reduce the cost through reducing test sample size is an active and continuous effort. In this paper the current engineering practices on constructing design curves for fatigue test data are reviewed first.
Journal Article

Fatigue Behavior of Stainless Steel Sheet Specimens at Extremely High Temperatures

Active regeneration systems for cleaning diesel exhaust can operate at extremely high temperatures up to 1000°C. The extremely high temperatures create a unique challenge for the design of regeneration structural components near their melting temperatures. In this paper, the preparation of the sheet specimens and the test set-up based on induction heating for sheet specimens are first presented. Tensile test data at room temperature, 500, 700, 900 and 1100°C are then presented. The yield strength and tensile strength were observed to decrease with decreasing strain rate in tests conducted at 900 and 1100°C but no strain rate dependence was observed in the elastic properties for tests conducted below 900°C. The stress-life relations for under cyclic loading at 700 and 1100°C with and without hold time are then investigated. The fatigue test data show that the hold time at the maximum stress strongly affects the stress-life relation at high temperatures.
Journal Article

Failure Mode Effects and Fatigue Data Analyses of Welded Vehicle Exhaust Components and Its Applications in Product Validation

Vehicle exhaust components and systems under fatigue loading often show multiple failure modes, which should be treated, at least theoretically, with rigorous advanced bi-modal and multi-modal statistical theories and approaches. These advanced methods are usually applied to mission-critical engineering applications such as nuclear and aerospace, in which large amounts of test data are often available. In the automotive industry, however, the sample size adopted in the product validation is usually small, thus the bi-modal and multi-modal phenomena cannot be distinguished with certainty.
Technical Paper

Failure Analysis and Problem Solving of Component Fatigue Tested Parts

Automotive exhaust system is supported by the hanger rods welded to it. Tenneco validates the structural integrity of these joints to customer specific reliability and confidence targets. As part of that validation, it is common to hold part of the exhaust system and apply constant amplitude, fully-reversed load on the hanger rod and perform a fatigue test till there is a failure somewhere in the toe of the weld or in the hanger rod. The exhaust system is designed, engineered and manufactured per system design specification of the customer. In an exhaust system program life cycle, the same fatigue test is performed on Prototype and Production parts. The same test is also performed on an additional batch of Pre-Production parts in the current case. Prototype, pre-production and production parts are referred here as Design Verification (DV), Pre-Production Verification (PPV) and Process Verification (PV) tests and parts.
Journal Article

Durability and Reliability Test Planning and Test Data Analysis

Durability/reliability design of products, such as auto exhaust systems, is essentially based on the observation of test data and the accurate interpretation of these data. Therefore, test planning and related data analysis are critical to successful engineering designs. To facilitate engineering applications, testing and data analysis methods have been standardized over the last decades by several standard bodies such as the American Society for Testing and Materials (ASTM). However, over the last few years, several effective testing and data analysis methods have been developed, and the existing standard procedures need to be updated to incorporate the new observations, knowledge, and consensus. In this paper, the common practices and the standard test planning and data analysis procedures are reviewed first. Subsequently, the recent development in accelerated testing, equilibrium based data fitting, design curve construction, and Bayesian statistical data analysis is presented.