Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Topological Variations of the Inverse Dual Converter for High-Power DC-DC Distribution Systems

1992-08-03
929114
New dc to dc converter topologies are presented which are suitable for high density high power supplies. Topological variations of the basic inverse dual converter (IDC) circuit such as the transformer coupled, the multiphase and the multipulse derivation of the single phase IDC have been analysed and some simulation results have been presented. It has been shown in a recent publication [1] that the single phase IDC offers a buck-boost operation over wide range without transformer, bidirectional power flow, and complementary commutation of the switches. The topologies examined in this paper have additional features such as lower device and component stresses, and smaller filter requirements, resulting in smaller size and weight. Some performance and possible applications are also examined. Finally the IDCs for serial and parallel power distribution, and ac tapping of the IDC are discussed.
Technical Paper

Thermal Analysis of Carbon Nanotubes Suspended in PAO Mixtures

2010-11-02
2010-01-1732
Poly Alpha Olefins (PAO) are extensively used as cooling fluid for thermal management in avionics cooling applications owing to their superior physical and chemical properties, such as greater fluidity at low temperature, lower volatility, a higher viscosity index, lower pour point, better oxidative and thermal stability as well as low toxicity. Solvents doped with minute concentration of nanoparticles are termed as “Nanofluid”. Anomalous enhancements in thermo-physical property values as well as in heat transfer performance of nanofluids have been reported using nanofluids (compared to that for the neat solvent). The thermal interfacial resistance between the nanoparticle and the solvent molecules (Kapitza Resistance) is the dominant factor controlling the efficacy of the nanofluids for cooling applications.
Technical Paper

Investigation of Thermal Characteristics of Nanofluids During Flow in a Micro-channel Using an Array of Surface Temperature-Nano-Sensors

2010-11-02
2010-01-1735
The thermal characteristic of nanofluid for flow in a micro-channel is reported in this study by using an array of temperature nano-sensors. In this study, K-Type Thermocouples (Chromel/Alumel) were fabricated by surface micromachining process on a silicon wafer to obtain the thin film thermocouple array (TFTA). The micro-channel with TFTA was mounted on a heater (calorimeter) for imposing a specified heat flux on the bottom surface of the micro-channel. De-ionized water (DIW) was used as the test fluid for recording the temperature profile on the wafer substrate at different flow rates and heat fluxes. Aqueous nanofluids containing alumina nanoparticles were then used to record the temperature profiles under similar heat flux and flow conditions. The temperature profile was measured with the TFTA in a linear array of 5 columns and 2 rows of sensors while the volume flow rate was varied from 5 μl/min, to 7 μl/min and to 9 μl/min.
Technical Paper

In Operation Detection and Correction of Rotor Imbalance in Jet Engines Using Active Vibration Control

1994-04-01
941151
Jet Engines may experience severe vibration due to the sudden imbalance caused by blade failure. This research investigates employment of on board magnetic bearings or piezolectric actuators to cancel these forces in flight. This operation requires identification of the source of the vibrations via an expert system, determination of the required phase angles and amplitudes for the correction forces, and application of the desired control signals to the magnetic bearings or piezo electric actuators. This paper will show the architecture of the software system, details of the control algorithm used for the sudden imbalance correction project described above, and the laboratory test results.
Technical Paper

High Impedance Fault Detection Using Artificial Neural Network Techniques

1992-08-03
929103
Artificial Neural Network(ANN) techniques are used to develop a system to detect High Impedance Faults(HIFs) in electric power distribution lines. Encouraging results were observed with a simple Multi-layer Perceptron(MLP) trained with the backpropagation learning algorithm. Although the results are not significantly better than those reported with other algorithmic approaches, ANN techniques have potential advantages over the other approaches; namely, ability to train the system easily to accommodate different feeder characteristics, ability to adapt and so become a better detector with experience and better fault tolerance. When these features are incorporated, the system is expected to perform better than existing systems. The system we developed for the current phase, the training strategies used, the tests conducted and the results obtained are discussed in this paper. Also background discussions on existing HIF detection techniques, and ANN techniques can be found in this paper.
Technical Paper

Enhanced Specific Heat Capacity of Molten Salt-Metal Oxide Nanofluid as Heat Transfer Fluid for Solar Thermal Applications

2010-11-02
2010-01-1734
In this study, a molten salt-based high temperature nanofluid is explored for solar thermal energy conversion applications. The efficacy of the nanofluid as a heat transfer fluid (HTF) in concentrating solar power systems is explored in this study. The molten salt can enable higher operating temperature resulting in enhancement of the overall system efficiency for power generation (using, for example, a Rankine cycle or Stirling cycle). However, the usage of the molten salt as the HTF is limited due to their low specific heat capacity values (compared with, for example, water or silicone oils). The low specific heat of molten salt can be enhanced by doping small amount of nanoparticles. Solvents doped with minute concentration of nanoparticles are termed as "Nanofluids." Nanofluids are considered as attractive coolants for thermal management applications due to their anomalously enhanced thermal properties (compared with the neat solvent).
X