Refine Your Search

Topic

Author

Search Results

Technical Paper

Acoustic Three Dimensional Finite Element Analysis of a Muffler

1996-02-01
960189
Three dimensional finite element analysis of mufflers has been carried out using ANSYS general purpose program. Analysis of simple expansion chamber muffler, extended tube muffler, tapered chamber muffler, offset chamber muffler and flow reversing chamber muffler has been carried out to predict the transmission loss. This three dimensional FEA technique has proved to be successful for the analysis of geometrically complicated mufflers where one dimensional theories can not be used. Parametric analysis of a simple expansion chamber muffler has been carried out to study the effect of expansion ratio, expansion chamber length, number of partitions within a chamber and unequal partitions. Analysis of acoustic cavity of a simple expansion chamber muffler has also been carried out to predict the natural frequencies and acoustic mode shapes.
Technical Paper

Acoustical Design of Vehicle Dash Insulator

2011-01-19
2011-26-0022
The acoustical performance of a vehicle dash panel system is rated by the noise reduction, which is calculated from the sound transmission and absorption characteristics. A typical dash insulator consists of a steel panel (vehicle body panel), a porous decoupler and heavy layer in the form of sandwich construction. The use of dash panel is to block engine noise from entering into the interior cabin. In the present study the transmission loss of dash panel has been evaluated in reverberation chambers and the sound absorption of dash panel has been determined in impedance tube. This paper deals with improving over all sound transmission loss and shifting of the double wall resonance well below the engine firing frequencies by changing the decoupler materials such as felt and foams of different density and thickness and heavy layer mass per unit area.
Video

Advances of Virtual Testing and Hybrid Simulation in Automotive Performance and Durability Evaluation

2012-02-15
Moir� method is useful to measure the shape and the whole-field distributions of displacement and strain of structures. There are many kinds of moir� methods such as geometric moir� method, sampling moir� method, Fourier transform moir� method, moir� interferometry, shadow moir� method and moir� topography. Grating method analyzing directly deformation of a grating without any moir� fringe pattern is considered as an extended technique of moire method. Phase analysis of the moire fringe patterns and the grating patterns provides accurate measurements of shapes or displacement and strain distributions. Some applications of these moir� methods and grating methods to dynamic shape and strain distribution measurements of a rotating tire, sub-millimeter displacement measurements from long distance for landslide prediction, real-time shape measurements with micro-meter order accuracy, etc. are shown. Presenter Yoshiharu Morimoto, Moire Institute Inc.
Journal Article

Advances of Virtual Testing and Hybrid Simulation in Automotive Performance and Durability Evaluation

2011-04-12
2011-01-0029
Virtual testing is a method that simulates lab testing using multi-body dynamic analysis software. The main advantages of this approach include that the design can be evaluated before a prototype is available and virtual testing results can be easily validated by subsequent physical testing. The disadvantage is that accurate specimen models are sometimes hard to obtain since nonlinear components such as tires, bushings, dampers, and engine mounts are hard to model. Therefore, virtual testing accuracy varies significantly. The typical virtual rigs include tire and spindle coupled test rigs for full vehicle tests and multi-axis shaker tables for component tests. Hybrid simulation combines physical and virtual components, inputs and constraints to create a composite simulation system. Hybrid simulation enables the hard to model components to be tested in the lab.
Technical Paper

An Innovative Test System for Holistic Vehicle Dynamics Testing

2019-04-02
2019-01-0449
In the automotive industry, there is a continued need to improve the development process and handle the increasing complexity of the overall vehicle system. One major step in this process is a comprehensive and complementary approach to both simulation and testing. Knowledge of the overall dynamic vehicle behavior is becoming increasingly important for the development of new control concepts such as integrated vehicle dynamics control aiming to improve handling quality and ride comfort. However, with current well-established test systems, only separated and isolated aspects of vehicle dynamics can be evaluated. To address these challenges and further merge the link between simulation and testing, the Institute of Internal Combustion Engines and Automotive Engineering (IVK), University of Stuttgart is introducing a new Handling Roadway (HRW) Test System in cooperation with The Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS) and MTS Systems Corporation.
Technical Paper

An Investigation of Vibration Characteristics in Automotive Seats Using Experimental and CAE Techniques

2011-01-19
2011-26-0047
Seat system resonant frequencies play an important role in seat design and ride dynamics. So NVH performance of the seats should be assessed from the viewpoint of tactile, acoustic and visual sense. Tactile response is the response of sub-systems, which is induced when the human body contacts steering wheel, footrest or seats. Acoustic response is the behavior of the seat system at the cavity resonance frequencies and visual sense is what we perceive under actual operating conditions. The objective of the present work is to conduct and correlate experimental modal test with FE modal test to identify tactile vibrations. Then the identified main seat modes will be used to set the mode map (seat target) at the stage of full vehicle level. This work will present a practical approach in understanding varied methods and techniques for determining resonant characteristics and for subsequent refinement of FE model.
Technical Paper

Application of Computer Simulation Using FEM and Experimental Techniques for the Reduction of Noise in Air Cooled Engine and Crankcase Cover of Motorcycle

1999-05-17
1999-01-1800
Measurement of sound intensity techniques has very good application in the source identification of a particular noise character. It has been applied effectively along with modal analysis and FE experimental excitation techniques to find out root cause of a particular noise character in small gasoline engine. A FEM shell model was used to make cylinder block and cylinder head model. FEM simulation was carried out which matched with experimental results. It helped to remove the noise character from engine. The other part of the paper describes the noise reduction of the crankcase cover used for the same motorcycle. It houses crankcase as well as two speed gearbox. The methodology involves very effective combination of experimental harmonic analysis, FE model with the shell element for the 3 piece crankcase cover, and experimental measurements. A particular sequence of this experimental techniques along with computer simulation techniques gives extremely good results.
Technical Paper

Approaches to Vehicle Dynamics and Durability Testing

1982-02-01
820092
A test engineer faces a series of considerations (decisions) when designing a test program to conduct service history simulation testing of full scale vehicles (structures) in the laboratory. This paper proposes a logical decision path, with pertinent discussion of tradeoffs, which is intended to serve as a design guide in this process. A good deal of the authors’ subjective opinion is included. The paper begins by presenting a model of how a test facility should interface to the total engineering process. This is important in establishing a proper division of responsibility for the validity and usefulness of test results. This is followed by a specific discussion of service history simulation testing for durability evaluation.
Technical Paper

BIOT’s Parameters Evaluation and Prediction of Flat and Molded Dash Panel Acoustic Performance and It’s Validation

2019-01-09
2019-26-0195
In today’s automotive industry sound package material design and optimization is important considering the need for weight reduction and achieving targeted sound absorption and sound transmission loss values. As per traditional approach vehicle level noise reduction targets are defined considering flat samples, but in actual vehicle condition molded trimmed parts are used. This paper discusses about the systematic methodology developed for molded sample characterization in terms of BIOT’s properties. Effects of different parameters like area wise thickness variation, density variation on BIOT properties is studied. Comparison of BIOT’s properties of flat and molded dash sample is done to study the effect of molded structure. Using these BIOT’s properties prediction of sound absorption and sound transmission loss results carried out using FTMM approach for flat sample and SEA approach for molded sample.
Technical Paper

Case Study on Thermal Management Strategies for HDD BS VI Exhaust Aftertreatment Performance Using Semi Physical Modelling Approach

2019-01-09
2019-26-0270
This paper focuses on assessment of different thermal management strategies for heavy duty Diesel(HDD) engine aftertreatment using semi-physical model for both engine and aftertreatment. Aftertreatment configuration of DOC, DPF and SCR is considered for six cylinder HDD engine. SCR reaction kinetics, ammonia adsorption and desorption parameters were calibrated with the data from synthetic test bench. Calibrated aftertreatment model is integrated with semi physical 6-cylinder HDD engine model to validate over steady state as well as transient measurement data. Engine model is modified for different thermal management strategies such as Intake, Exhaust throttle valve, start of main injection, Post injection and evaluated for their impact on performance and emission parameters. Results over operating point are analysed to select best strategy at cold operating zone.
Technical Paper

Chemical Kinetics Modelling of Exhaust After-Treatment System: A One Dimensional Simulation Approach

2019-01-09
2019-26-0249
The Indian automotive industry has taken a big leap towards stringent Bharat Stage VI (BS VI) emission standards by year 2020. A digital driven design and development focusing on innovative and commercially viable technologies for combustion and exhaust after-treatment system is the need of the time. One-dimensional (1D) simulation serves as a best alternative to its counterparts in terms of obtaining faster and accurate results, which makes it an ideal tool for carrying out optimization studies at system level. In this work, 1D chemical kinetics modelling and analysis of exhaust after-treatment system (EAT) for a heavy-duty diesel has been performed using GT-Power. Initially, a single site 1D model for a diesel oxidation catalyst (DOC) has been developed and then, a two-site, 1D model for a selective catalytic reduction (SCR) catalyst was also developed based on reactor data.
Technical Paper

Combined PCCI-DI Combustion to Meet EURO-IV Norms on LCV Engine - Experimental and Visulisation Study

2011-01-19
2011-26-0031
The Partially Pre-mixed Charge Compression Ignition (PCCI) combustion was experimentally and computationally investigated with retarded injection timing for mixture homogeneity and for lower emissions. PCCI combustion concept was experimentally evaluated with retarded injection timing close to TDC with high EGR levels up to 50%. The CFD analysis has carried out for mixture homogeneity with different injection pressures and timings. A 4-cylinder TCIC engine having 2valves/cylinder were selected for experiments and speed vs. torque mapped for LCV applications. A Visio technique has been used to study the in-cylinder combustion. After fine tuning of injection pressure, injection timing and EGR ratio over entire range of engine speeds and loads, a 13-mode ESC test cycle has been carried out for EURO-IV and EURO-V emissions. Experimental results shows that it is possible to meet EURO-IV emissions with combined PCCI-DI combustion concept with economical aftertreatment solution.
Technical Paper

Component Tests Based on Vehicle Modeling and Virtual Testing

2017-03-28
2017-01-0384
ADAMS, SIMULINK, and ADAMS-SIMULINK co-simulation models of component test systems, Multi-Axis-Simulation-Table (MAST) systems, and spindle-coupled vehicle testing system (MTS 329) were created. In the ADAMS models, the mechanical parts, joints, and bushings were modeled. Hydraulic and control elements were absent. The SIMULINK models modeled control and hydraulic elements including actuator dynamics, servo valve dynamics, closed loop control, three-variable control, matrix control, and coordinate transformation. However, the specimen had to be simplified due to the limitation of SIMULINK software. The ADAMS-SIMULINK co-simulation models considered hydraulic and control components in the SIMULINK portion and mechanical components in ADAMS portion. The interaction between the ADAMS and SIMULINK portions was achieved using ADAMS/Control.
Technical Paper

Design and Development of High Performance Diesel Engines for Off-Highway and Genset Applications with Emerging Technologies

2008-10-07
2008-01-2676
To meet the latest trends in Internal Combustion engines regarding efficiency, emissions and durability, an integrated approach to engine development is required. This paper describes about a Robust, Reliable and an integrated approach used in design and development of an engine for high power density which can be adopted for both Off-highway application as well as Genset application. The engine is developed to meet US - EPA Tier-III Emission Norms and MoEF (Genset Emission Norms for India formulated by Ministry of Environment and Forest) emission norms respectively. This paper discusses various technologies applied in developing this engine to achieve high power density, low exhaust emissions, and low noise and vibrations. This 4 valve per cylinder engine is created largely within a digital environment using the latest computer aided design (CAD) and computer aided engineering (CAE) techniques and simulation tools.
Technical Paper

Design of High Speed Engine's Cam Profile Using B-Spline Functions for Controlled Dynamics

2012-01-09
2012-28-0006
Recent trends towards design of High Performance Diesel engines creating more challenges in the area of design, durability and NVH aspects of components and systems. In particular, Valvetrain system of High Speed application engines is one of the most critical and complicated dynamic system in terms of precise control of events, max. Lift, control over accelerations and vibration related issues. This can be tackled by designing the cam profile for better valve train dynamics. High frequency components and/or excessive jerks in a cam profile are important sources of cam-follower vibrations. There are various techniques of designing cam profile to achieve controlled valve train dynamic behavior at high speed operations. Present paper discuss the impact of various cam profile options designed using Polydyne, N-Harmonic and B-Spline methodologies on a field problem of cam wear for high speed engine application.
Technical Paper

Design of Super Silent Enclosure for Diesel Genset Using Statistical Energy Analysis (SEA) Technique

2019-01-09
2019-26-0185
Diesel engine generators are commonly used as a power source for various industrial and residential applications. While designing diesel generator (DG) enclosures requirements of noise control, ventilation and physical protection needs to be addressed. Indian legislation requirement demands DG enclosure insertion loss (IL) to be minimum 25 dB. However for certain critical applications like hospitals, residential apartments customer demands quiet DG sets than the statutory limits. IL targets for such application ranges between 35-40 dB. The objective of this paper is to develop methodology to design ‘Super Silent’ enclosure with IL of 35 dB by Statistical Energy Analysis (SEA) approach for small capacity DG set. Major challenge was to achieve IL of 35 dB with single enclosure and making use of SEA technique for small size enclosure wherein modal densities is very less. Major airborne noise sources like engine, radiator fan and exhaust were modelled by capturing noise source test data.
Technical Paper

Development of Autonomous Vehicle Controller

2019-01-09
2019-26-0098
Autonomous driving is looked upon as solution for future of automotive vehicles. The technology has tremendous possibilities to improve safety, fuel economy, comfort, cost of ownership etc. The project to develop an autonomous controller from scratch was undertaken, with objective to drive under selected test scenarios. The car, modified to drive using this autonomous controller, is able to handle these scenarios. The key scenarios include ability to successfully drive on tracks with well-marked lanes, Follow the route as per selected trip plan file, recognize and follow all traffic road signs, traffic signals en-route, identify other vehicles on the road or pedestrians in the lane and take the appropriate action. The development was carried out using frugal engineering approach. As the Autonomous Vehicle technology is still under development, the standard proven published approaches are not available.
Journal Article

Development of a Full-Vehicle Hybrid-Simulation Test using Hybrid System Response Convergence (HSRC)

2012-04-16
2012-01-0763
Hybrid vehicle simulation methods combine physical test articles (vehicles, suspensions, etc.) with complementary virtual vehicle components and virtual road and driver inputs to simulate the actual vehicle operating environment. Using appropriate components, hybrid simulation offers the possibility to develop more accurate physical tests earlier, and at lower cost, than possible with conventional test methods. MTS Systems has developed Hybrid System Response Convergence (HSRC), a hybrid simulation method that can utilize existing durability test systems and detailed non-real-time virtual component models to create an accurate full-vehicle simulation test without requiring road load data acquisition. MTS Systems and Audi AG have recently completed a joint evaluation project for the HSRC hybrid simulation method using an MTS 329 road simulator at the Audi facility in Ingolstadt, Germany.
Technical Paper

Development of a Parametric Model for Burn Rate Estimation in Direct Injection Diesel Engine

2019-01-09
2019-26-0035
In internal combustion engines, rate of fuel burning known as burn rate is a simplified representation of complex in-cylinder combustion process. It is considered as a prime input especially in 1D simulation tool for all important thermodynamic studies. A novel parametric model for prediction of burn rate in heavy duty Direct Injection (DI) diesel engine has been introduced in the present work. A wide range of experimental data with more focus on higher load points with different in-cylinder combustion characteristics is considered and burn rates have been generated using measured pressure trace. Generated burn rates have been studied over different phases of combustion. These burn rate shapes have been analyzed to understand the effect of fuel injection system, air management subsystem parameters along with in-cylinder conditions on combustion. Different mathematical modelling approaches for burn rate approximation like Wiebe function have been studied.
Technical Paper

Digitally Controlled Servo-Hydraulic Crash Simulator

2000-03-06
2000-01-0048
The value of crash simulation has long been recognized by carmakers as an essential tool for vehicle development and certification programs. Driven by the need to minimize time-to-market for new models, cost reduction, and by consumer demand for safer cars and trucks, the industry is moving to newer technologies in crash simulation. Crash simulation provides an inexpensive means to quickly simulate the effects of a barrier crash by reproducing its basic elements - acceleration, velocity and displacement - in a nondestructive test. Crash event timing and accuracy of reproduction are critical performance factors. This paper describes the unique features and capabilities offered by a new generation of crash simulators.
X