Refine Your Search

Topic

Author

Search Results

Journal Article

Virtual Testing and Correlation for a Motorcycle Design

2010-04-12
2010-01-0925
Two-poster rig plays a very important role in accelerated durability evaluation in a motorcycle industry, similar to what a four-poster rig does in a car industry. The rig simulates the exact road conditions in the vertical direction through tire coupling by applying feedback control on displacement. On account of its ability to simulate to the exact customer usage conditions, it reproduces the failures realistically as it happens on the field. However, as complete vehicle is required for testing on the rig, the testing happens mostly in the advanced stages of product development. Any failures beyond the concept stage have a huge impact on the development time and cost and the same should be avoided. Therefore, in this paper, a virtual testing methodology is proposed, based on which potential failures on the vehicles can be captured at the concept design stage itself. An ADAMS model of a motorcycle was created.
Technical Paper

The Generation of Cyclic Blockloading Test Profiles from Rainflow Histograms

1992-02-01
920664
A numerical method for generating a blockloading profile from a rainflow histogram is described. Unlike previous techniques, this method produces a blockloading profile which, when rainflow-counted, yields a rainflow histogram identical to the original. When implemented with modern data acquisition and signal-processing techniques, this generation method provides a means of developing blockloading test profiles which are correlated with actual service data. This key benefit elevates existing simple testing systems as useful and productive tools despite the emrgence of more complex testing systems.
Technical Paper

The Development of Tools for the Automatic Extraction of Desired Information from Large Amounts of Engineering Data

2001-03-05
2001-01-0707
Product development processes generate large quantities of experimental and analytical data. The data evaluation process is usually quite lengthy since the data needs to be extracted from a large number of individual output files and arranged in suitable formats before they can be compared. When the data quantity grows extremely large, manual extraction cannot be done in a limited timeframe. This paper describes a set of tools developed by MTS engineers to automatically extract the desired information from a large number of files and perform data post-processing. The tools greatly improved both speed and accuracy of the evaluation process during the development of a sound quality-based end-of-line inspection system for seat tracks [1]. It allowed engineers to quickly gather a comprehensive understanding of the relative importance of individual design parameters and of their correlation to the subjective perception of the sound quality of the seat track.
Technical Paper

Steering Effort Reduction by DC Motor Assisted Steering Mechanism in 3- Wheeler Vehicle

2014-11-11
2014-32-0017
The steering system of a 3-wheeler vehicle comprises a single column steering tube. The steering inclination at handle bar end is converted to wheel slip or inclination by the steering column. A compromise in either ride or handling is considered in the functional requirement of the 3-wheeler vehicle. The 3- wheeler vehicle under study is designed for ride comfort and the handling levels are compromised. Variants of the vehicle under study are meant for public passenger transport requirements. Drivers' ride comfort is considered as the primary functional requirement during design and driver's steering fatigue is not given importance. For the comfort of driver, steering effort has to be less without compromise in handling characteristics. The driver of this type of vehicle drives the vehicle for 15-18 hours a day. Driver's feedback suggests high steering effort as a human fatigue failure mode and also a cause of shoulder pain.
Technical Paper

Simulation Based Approach for FIS Configuration Selection

2011-10-06
2011-28-0132
Environmental pollution is of great concern; hence the emission norms for the diesel engines are made more stringent. The purpose of this work is to develop a process to optimize the FIS parameters and select a most suitable FIS by simulation to meet the target emissions. During the combustion optimization exercise of diesel engine, different hardware combinations like injector, HPP etc are matched through testing to achieve the required performance and emissions. The process requires the real testing of the engine on engine dynamometer with various hardware combinations, which is expensive and time consuming. A simulation model of diesel FIS is constructed using ‘AVL Hydsim’. The model is validated by comparing the predicted and the experimental results. The validated model is used for further work. Critical parameters were listed based on the sensitivity analysis on the base model.
Technical Paper

SIZE INDIA- Anthropometric Size Measurement of Indian Driving Population

2011-01-19
2011-26-0108
Anthropometric data of a country is vital database for automotive design and other design applications. It is also an important parameter in population studies. Most developed countries have invested resources over the years to develop such a database and this information is accessed by many OEMs and major Design Houses. However, an updated and comprehensive Anthropometry of Indian Population is largely unknown. In the past, a few institutions have done projects to bring out a picture of the Indian Anthropometry. However, keeping in view the rapid industrialization and increase of India-specific designs which require an access to latest Anthropometric database, the project “SIZE INDIA” has been initiated. For the first time in India, a state of the art 3D Whole body scanner technology has been used and thereby large volume of data has been generated in a very short span of time.
Technical Paper

Racing Motorcycle Design Process Using Physical and Virtual Testing Methods

2000-11-13
2000-01-3576
Recently, the use of laboratory-based physical prototype testing as well as the design of virtual models and virtual test equipment has accelerated the pace and quality of racing vehicle development. In particular, the combined use of both virtual and physical testing, when correlated to racetrack improvements, yields a powerful development tool(1), (2),(3). In this study, we applied these techniques from the first stages of the design of a unique Grand Prix racing motorcycle. First, a wire-frame CAD model, then a parametric CAD solid model of the motorcycle was created after preliminary calculations specified the approximate design of structural elements. Subsequently, a virtual dynamic model was created and subjected to a variety of inputs, including sine sweeps, shaped white noise and simulated road time-histories. Loads and other dynamic responses were measured on the virtual model, so that it's design could then be optimized to yield acceptable performance and durability.
Journal Article

Pad Correction Estimation around 5 Belt Wind Tunnel Wheel Belts Using Pressure Tap Measurement and Mathematical Pressure Distribution Model

2022-03-29
2022-01-0902
5 belt wind tunnels are the most common facility to conduct the experimental aerodynamics development for production cars. Among aerodynamic properties, usually drag is the most important development target, but lift force and its front/rear balance is also important for vehicle dynamics. Related to the lift measurement, it is known that the “pad correction”, the correction in the lift measurement values for the undesirable aerodynamic force acting on wheel belt surface around the tire contact patch, must be accounted. Due to the pad correction measurement difficulties, it is common to simply subtract a fixed amount of lift values from measured lift force. However, this method is obviously not perfect as the pad corrections are different for differing vehicle body shapes, aerodynamic configurations, tire sizes and shapes.
Technical Paper

Optimizing-What's That?

1976-02-01
760316
The purpose of this paper is to present the past and present concepts of mechanical test optimization, which means the adjustment of a test machine command signal to achieve desired amplitude and mean levels. In particular, the methods of null pacing, dynamic frequency control, classical amplitude control, and maximum velocity limiting / control are discussed along with their respective application areas, advantages and disadvantages. Also, the factors of data verification and over-complication of the test are noted.
Technical Paper

Optimizing Load Transducer Design Using Computer-Based Analytical Tools

2001-03-05
2001-01-0787
Rapid development of advanced multi-axial load transducer systems now requires the use of computer-based analytical tools to assist the development engineer optimize the design to meet often-conflicting design targets. This paper presents a case study based on the development of a wheel force load transducer to meet a challenging set of performance goals including accuracy, repeatability, durability and insensitivity to the external environment. The paper also highlights the limitations of some of the current analytical tools when used for load transducer design, and how these limitations can be overcome by cost-effective combinations of analytical performance prediction and physical test confirmation.
Technical Paper

Optimization in Forging Process Using Computer Simulation

2014-04-28
2014-28-0041
New process development of forging component require lot of process knowledge and experience. Even lots of trial-and-error methods need to be used to arrive at optimum process and initial billet dimensions. But with help of reliable computer simulation tools, now it is possible to optimize the complete process and billet dimensions without a single forging trial. This saves lot of time, energy and money. Additionally, simulation gives much more insight about the process and possible forging defects. In this paper, a complete forging process was needed to be designed for a complex component. With the help of computer simulation, the complete conventional forging process and modified forging process were simulated and optimized. Forging defects were removed during optimization of the process. Also billet weight optimization was carried out. Deciding the pre-forming shape of the billet was the main challenge.
Technical Paper

Optimal Control Strategy Using Cloud for a Parallel Topology Based HEV to Minimize Energy Consumption

2022-10-05
2022-28-0048
Two-wheelers especially scooters constitute a majority market share in Asian countries. A hybrid drive-train integration of electric motor/motors with a conventional IC engine is a suitable solution to achieve reduction in CO2 emissions and as an alternative to IC Engine only vehicles. A model based supervisory controller is proposed, considering the behavior of the electrical drive, IC engine as well as the transmission, which determines the modes of operation. The controller determines the commanded torque split between the engine and electric motor across all modes of operations. With the information about the driving cycle, an optimal controller based on dynamic programming that minimizes fuel and equivalent electrical energy consumption with charge sustaining feature is proposed. This supervisory controller was simulated for hybrid configuration running on WMTC driving cycle to minimize equivalent energy consumption.
Technical Paper

Numerical and Experimental Analysis of Intake Flow Structure and Swirl Optimization Strategies in Four-Valve Off-Highway Diesel Engine

2019-01-09
2019-26-0042
Future emission limits for off-highway application engines need advanced power train solutions to meet stringent emissions legislation, whilst meeting customer requirements and minimizing engineering costs. DI diesel engines with four valves per cylinder are widely used in off- highway applications because of the fundamental advantages of higher volumetric efficiency, lower pumping loss, symmetric fuel spray & distribution in combination with the symmetric air motion which can give nearly optimal mixture formation and combustion process. As a result, the fuel consumption, smoke levels and exhaust emissions can be considerably reduced. In particular, the four-valve technology, coupled with mechanical low pressure and electronic high pressure fuel delivery systems set different requirements for inlet port performance. In the present paper four valve intake port design strategies are analysed for off highway engine using mechanical fuel injection systems.
Technical Paper

Novel Low Cost Experimental Procedures to Estimate Lateral Force Characteristics of a Tire

2016-11-08
2016-32-0054
The aim of the present study is to develop feasible test methods to measure the lateral force characteristics of motorcycle tires. In this work, new experimental procedures are developed to estimate the lateral friction coefficient and lateral stiffness characteristics of motorcycle tires. A fairly accurate tire model is developed using the measured lateral force characteristics. Based on this tire model, the steer behavior and the cornering limits of the motorcycle are estimated using an analytical model of the vehicle. The results are validated with experimental data. The test methods proposed are shown to be adequate to estimate tire characteristics that are important for tire development and is less expensive compared to the standard testing facilities available.
Technical Paper

Motorcycle Suspension Development Using Ride Comfort Analysis with a Laboratory Test System

1999-09-28
1999-01-3276
An analytical approach to developing motorcycle suspensions is presented. Typical uncontrolled and subjective evaluations that place limits on suspension development are curtailed through the use of a laboratory-based road simulation technique, which evaluates vehicle ride quality. Ride comfort is calculated using a specifically tailored NASA model after primary and secondary frequency regimes have been established for this type of motorcycle. Correlation between road and laboratory simulation is measured and compared to the road data variance. A designed experiment evaluates changes in ride quality as a function of suspension and tire pressure adjustments. Various suspension settings are repeated on the simulator and corresponding ride numbers are calculated for both environments. An analysis is performed to correlate ride quality improvements on the simulator with ride quality improvements in the field.
Technical Paper

Modeling and Simulation of Steady State Handling Characteristics of Formula Vehicle with Antiroll Bars

2019-01-09
2019-26-0068
Antiroll bar plays an important role in rollover stability of the vehicle. But not only does it limit the vehicle roll during cornering, but also alters the lateral load transfer between the tracks, which in turn affects the cornering performance of the vehicle. This paper deals with the design and mathematical modeling of antiroll bars to reduce the body roll of the vehicle from 1.5°/g to less than 1.0°/g. Rear bar uses a conventional torsion type bar but the front anti roll mechanism is an unconventional antiroll bar using a rotating double cantilever mechanism. Mathematical modeling is done for pushrod rod actuated antiroll mechanisms to simulate its non-linear roll rates. Antiroll bars for front and rear are designed for the calculated stiffness. Finite Element Analysis of antiroll bar and its components is done and the mechanism is tested on the vehicle. Steady state tire model parameters are generated by curve fitting tire testing data into pacejka coefficients.
Technical Paper

Model-based Hardware-in the-Loop Testing of Battery Management System

2022-10-05
2022-28-0388
The accelerated growth of Electric Vehicles (EV) latterly demands effective energy storage systems, highly reliable electronics, and controllers. Li-ion batteries are prevalently used in EVs due to their high energy density, low self-discharge, better temperature performance, and efficiency. Nevertheless, the abuse of these has a severe impact and can lead to dangerous circumstances, posing a threat to the vehicle and the consumer as well. A Battery management system (BMS) is a set of electronic components with functions that play a significant role in monitoring, controlling, and safeguarding the battery pack against critical parameters, thus extending the lifespan of the battery. Due to the paramount importance of this embedded system, testing of the BMS prior to usage in the vehicle is indispensable. Testing of BMS in an assembled condition with the battery pack is desirable as it ensures examination closer to real world conditions.
Technical Paper

Methodology Development for External Aerodynamic Evaluation of a Bus and Its Impact on Fuel Economy along with Experimental Validation

2019-01-09
2019-26-0294
The objective of this study is to develop, demonstrate and validate the methodology of external aerodynamic analysis of a State Road Transport bus for prediction of drag coefficient and its impact on fuel consumption with experimental validation. It has been verified that vehicle consumes around 40% of the available engine power to overcome the air drag. This gives us a huge scope to study the effect of aerodynamic drag. Baseline model of State Road Transport Bus was evaluated for estimating fuel consumption using Computational Fluid dynamics (CFD) methodology. The CFD results were validated with the experimental data with less than 10% deviation. Bus design was optimized with an objective of reducing the fuel consumption with parameters like angle of windshield, rounding and tapering corners and rear draft angle. Optimized bus design is also ensured to meet functional specifications as per AIS052.
Technical Paper

Literature Review and Simulation of Dual Fuel Diesel-CNG Engines

2011-01-19
2011-26-0001
Dual fuel operating strategy offers great opportunity to reduce emissions like particulate matter and NOx from compression ignition engine and use of clearer fuels like natural gas. Dual-fuel engines have number of potential advantages like fuel flexibility, lower emissions, higher compression ratio, better efficiency and easy conversion of existing diesel engines without major hardware modifications. In view of energy depletion and environmental pollution, dual-fuel technology has caught attention of researchers. It is an ecological and efficient combustion technology. This paper summarizes a review of recent research on dual-fuel technology and future scope of research. Paper also throws light on present limitations and drawbacks of dual-fuel engines and proposed methods to overcome these drawbacks. A parametric study of different engine-operating variables affecting performance of diesel-CNG dual-fuel engines vis-à-vis base diesel operation is also summarized here.
Technical Paper

LEAN Techniques for Effective, Efficient and Secure Information Processing in Automotive Homologation

2019-01-09
2019-26-0335
It is an established fact that virtual knowledge based engineering has revolutionized R & D activities by streamlining processes, ensuring productivity and accuracy. This has resulted in freeing up time for quality interpretational work and decision making for engineering the best of products. Subsequently, homologation is a mandatory requisite activity for product signoff. It certifies the quality of the product and is an important factor in giving the product an authenticity for sale in the market. Homologation entails compliance to regulations existing in form of well-established standards which elaborate systematic and detailed guidelines on conducting physical testing for automotive systems, sub-systems or components for specific vehicle types.
X