Refine Your Search



Search Results

Technical Paper

Variable Geometry in a Supersonic Transport Aircraft

The variable-geometry features of the United States supersonic transport are described. Particular attention is given to the hardware development of those variable-geometry features unique to the supersonic transport. The design, development, and current status of a direct lift control sys tern, the supersonic internal-external compression inlet, and the full-scale wing pivot are described.
Technical Paper

U.S. Lab-A Module Cabin Air Distribution in Space Station

This paper presents the basic test data obtained from tests of a cabin air distribution system in a simulated Space Station U.S. Lab-A module. The cabin air distribution system controls the flow of air in the open space of a Space Station module. In order to meet crew comfort criteria the local velocities for this cabin air are required to be distributed within a specified range with upper and lower limits. Achieving this desired velocity distribution is dependent upon the: (1.) design of the cabin air supply equipment and cabin air return equipment, (2.) total flowrate of air supplied to and subsequently returned from the cabin, and (3.) interactive effects of any other additional air flow streams which enter and exit the cabin. The basic Space Station design for the cabin air supply and air return equipment was used in this test program. Only directional adjustments to vanes in supply air diffusers were made during the test.
Technical Paper

The United States SST and Air Quality

The feasibility of commercial supersonic flight has been questioned on the basis of air pollution and an alleged potential for altering the world's climate and weather. A study conducted by Boeing reveals no basis for any of these claims. However, in some cases more data are required to show there is no effect.
Technical Paper

The Pilot and the Flight Management System

This paper addresses the question of whether automation is being used in the proper applications in aircraft in order to maximize aircraft capabilities and make the most of human performance capacity. It is believed that the aircraft designers, while employing automation, have given due regard to the pilot's role as operator and manager of the aircraft. There does, however, seem to be valid concern for the human element in certain aspects of the air traffic control system.
Technical Paper

The Economics of Subsonic Transport Airplane Design, Evaluation and Operation

The interactive and cyclical design, evaluation, and operational system that conceives transport airplanes is described. Some economic consequences of preliminary design variable choices are displayed, followed by an inspection of the 1967 ATA Method and actual direct operating costs. Uses and misuses of the formula costs, as compared to actual cost levels, are considered. Finally, the impact of airplane choice on airline profitability is examined. It is seen that the profit consequences are great enough to require careful attention to economic trades in every step of the design, evaluation, and operational process.
Technical Paper

The 747 Fuel System

The fuel system installed in the Boeing Model 747 airplane is described in general, and the pressure fueling system treated in detail. The general treatment includes description of fuel tanks, engine fuel feed system, fuel jettison system, defueling system, fuel quantity indicating system, and fueling system. The component parts of the pressure fueling system are described, and performance of the system is evaluated. In the design of the 747 airplane, surge pressures and static electrification, possible problem areas associated with refueling large airplanes, have been minimized. The fuel system of the 747 meets applicable Federal Aviation Regulations and customer requirements.
Technical Paper

Test Results of the Effects of Air Ionization on Cigarette Smoke Particulate Levels Within a Commercial Airplane

Passengers and flight attendants often notice a haze of smoke under the overhead stowage bins in aircraft cabins when cigarette smoking is allowed. As normally operated, the ventilation system in Boeing 737/757 aircraft does not rapidly remove this smoke haze. Air ionization systems from three vendors were tested in a 10 foot long Boeing 737/757 cabin test section with a cruise condition ventilation rate and two cigarette smoking rates to assess their effectiveness in removing smoke haze from the local breathing areas of passengers and flight attendants. Smoke particulate densities were monitored at five breathing areas and at an exit grill in the test section. All of the ionization systems significantly increased the rate of smoke removal after smoking had stopped, increasing the removal rate by about 25%. None of the systems showed a statistically significant reduction of smoke levels at the individual monitoring points while cigarettes were being smoked.
Technical Paper

Temperature Control Analysis for the U.S. Lab, Node 1, and Elements Attached to Node 1

The International Space Station (ISS) Temperature and Humidity Control (THC) system has been designed with the intent of supplying the air cooling needs of various elements from the U.S. Lab heat exchanger assembly. Elements without independent air cooling capability are known as “parasitic” elements; these are Node 1, the Cupola, and the Mini Pressurized Logistics Module (MPLM). Analysis results are presented which show expected temperatures in the MPLM, and Node 1, as various heat loads are present in the respective elements. Analyses within this paper are coordinated with the results obtained from the Development Test of the complex USL/Node 1 integrated ducting system. This test was conducted in the summer of 1995, at the McDonnell Douglas test facility in Huntington Beach, California.
Technical Paper

Specification Reform of Avionics Thermal Design Criteria – An F-15 Case Study

Traditional thermal design criteria for avionics equipment are reviewed. Several studies have recently been conducted on the F-15 to assess accuracy of these design criteria. An overview of the study approach and results are presented. Specific topics investigated include: emergency cooling air provisions, cold start-up, hot start-up, normal and transient bay temperatures, and altitude design. The results indicate that many existing design criteria are overly conservative. The study findings suggest that reform of the existing thermal specification process is needed. Many of these reforms are applicable to the general aerospace industry and may result in significant acquisition cost savings as a result of the trend toward usage of commercial electronic parts. The reforms suggested include a new performance based thermal specification approach that increases emphasis on aircraft usage and frequency of occurrence. New transient design criteria are also recommended.
Technical Paper

Space Station THC/IMV Development Test/Analysis Correlations and Flight Predictions

The International Space Station (ISS) Temperature and Humidity Control/Intermodule Ventilation (THC/IMV) system for the U.S. Lab provides required cooling air for the U.S. Lab and also provides “parasitic” cooling air for Node 1 and its attached elements. This scheme provides cooled air from the Lab THC directly to Node 1 and also to elements attached to Node 1, at different stages of Space Station assembly. A development test of the U.S. Lab and Node 1/attached elements' integrated THC/IMV ducting system was performed in the summer of 1995. This test included the U.S. Lab's development level Common Cabin Air Assembly (CCAA), which removes sensible and latent heat from the circulated and ducted cabin air. A referenced 1996 ICES Paper contains the initial correlation results. An analytical model has been developed, which has been used to predict flow and pressure drop performance of the system for several potential and actual changes from the Development Test configuration.
Technical Paper

Space Station Lab Flight Test Article Results and Analytical Model Correlations

The International Space Station (ISS) Temperature and Humidity Control/Intermodule Ventilation (THC/IMV) system for the U.S. Lab provides required cooling air for the U.S. Lab and also provides “parasitic” cooling air for Node 1 and its attached elements. This scheme provides cooled air from the Lab THC directly to Node 1 and also to elements attached to Node 1, at different stages of Space Station assembly. This paper reports on the results of Open Hatch ECLSS/ TCS Tests for International Space Station’s Lab Module. The hardware tested is referred to as proto-flight hardware. Upon satisfactorily passing these Open Hatch and later Closed Hatch, imposed ground based, proto-flight tests, the proto-flight hardware will become flight hardware. The Lab Module is scheduled for launch during late 1999. The particular ECLSS/TCS equipment discussed here are the Temperature Humidity and Control (THC) equipment and Intermodule Ventilation (IMV) equipment.
Technical Paper

Saturn S-IC Stage Operational Experience

A concerted, systematic program for design and development of a high reliability booster has been developed by The Boeing Co. for use in the NASA Apollo Manned Space Flight Program. The S-IC program stressed discipline in analysis, testing, and management to insure a consistent and reliable end product. Evaluation of the operational experience from this program resulted in a complete systems analysis program being established which encompassed single-point failure mode and effect analysis, double-point failure mode and effect analysis, and analysis of potential human-initiated failures. These activities serve to predict stage reliability, identify reliability critical components, and provide a constant feedback to design and management to permit timely hardware redesign, retesting or revision to operating procedures to eliminate or minimize the probability of failure.
Technical Paper

Radar Detection of Turbulence in the Upper Troposphere

Encounters of jet aircraft with high altitude turbulence prompted the investigation of various techniques to probe and locate turbulence in areas lacking particles (rain drops, hailstones). A promising technique is to measure the radio refractive eddies and gradients by radar backscatter. Radio refractive index eddies can, in principle, be found where an atmosphere characterized by a nonadiabatic lapse rate of refractive index is stirred up by turbulence. A sequence of VHF backscatter experiments which will hopefully lead up to an airborne CAT detector are presented in this paper.
Technical Paper

Process Automation Through-Reality Graphics, Kitting, and Automated Panel Protection

This paper addresses process improvements through reality graphics (RG) aided by automated panel protection (APP) and tool kitting pertaining to automated wing riveting and fastening. This system provides an integrated display of numerical controlled media, automatic tool identification, and image files, combined with automated panel protection. Reality graphics (image files) within the NC program allow the machine operator to access portions of the NC program while attaching a support graphic. This would include safety hazards, unique panel differences, program start, and tool change information. Automated panel protection (APP) analyze process key characteristics, and perishable tool kits, and it monitors the installation of fasteners using multiple cameras mounted in strategic positions, taking real-time images. The APP detects incorrect tooling and possible panel damage, with little or no impact to the operational cycle time of the automated fastening equipment.
Technical Paper

Problems of Maintaining Equipment Containing Integrated Circuits

This paper discusses some of the problems of developing and maintaining equipment containing integrated circuits. The problems discussed fall into three categories: (1)Processing, (2) Fault Isolation, and (3) Human Error. Quantitative study of these problems shows the highest number were experienced during preliminary-manufacturing and testing (screening and burn-in), with a decrease during final manufacturing checkout (board assembly and final testing) and a minimum during the system operational period. The paper concludes that maintainability is still the necessity it was even with the advent of reliable integrated circuits. This is substantiated by the many failures and defects encountered during manufacturing and development phases. Manufacturing economics force the consideration of maintainability in integrated circuit design.
Technical Paper

Potentials for Advanced Civil Transport Aircraft

In this lecture, a review of Boeing commercial transport models is presented in chronological order from the B-1 flying boat of 1919 to the 747. The problems of air transport systems including convenience, reliability, safety, comfort, performance, and financial and environmental costs are discussed. The probability of more severe future problems is considered, and suggestions are offered as to technology and system improvements which may need to be pursued if civil air transport systems are to continue to provide fast, convenient transportation with a high level of public acceptance.
Technical Paper

Payload Attach System for the ISS - Development and Verification for EVA Operations

The process of developing a Payload Attach System (PAS) which will support a wide range of experimental and commercial payloads on the International Space Station (ISS) has experienced an interesting evolution during its design, development, test and evaluation (DDT&E) phase. This evolution has been caused in large measure by requirements intended to insure compatibility of the PAS with the extravehicular activity (EVA) crewmember during nominal and contingency operations in and around the PAS sites. As the design of the ISS transitioned from its Freedom predecessor, the effort to keep costs down by preserving as much of the original Freedom design as possible led to design decisions that challenged engineering thinking.
Technical Paper

Parametric Relationships of Factors Affecting Maintainability of Long Duration Manned Space Flights

There are many parameters which influence the maintainability of long duration manned space flights. This study involved a detailed investigation of the sensitivity of some of the major parameters on a typical 1975 near earth orbit spacecraft and mission. A mechanized analytical math model and a mission simulation model were utilized to evaluate the effects of: spacecraft system weight, volume and reliability; mission duration and resupply rate; and maintenance requirements on the total spacecraft requirements to achieve various probabilities of crew survival and mission success. Preliminary information developed in the NAS 2-3705 contract is presented. The results obtained to date are given, but specific conclusions will not be made until the study is completed.
Technical Paper

Nozzle Development for the Upper Surface - Blown Jet Flap on the YC-14 Airplane

A discussion of wing-nozzle configuration development for the application of upper surface blowing to a STOL airplane is presented. The technical challenge is to achieve an integrated system which provides the desired performance for the low speed design conditions and also results in efficient operation during cruise. The resulting configuration is a complete integration of the propulsion system and airplane aerodynamics to achieve efficient operation at all regimes. This paper examines the major design parameters to be considered, describes a number of the configurations tested, and presents static and wind tunnel test results for these configurations. Concluding remarks are made relative to USB nozzle development.