Refine Your Search

Topic

Search Results

Technical Paper

Variable Geometry in a Supersonic Transport Aircraft

1967-02-01
670878
The variable-geometry features of the United States supersonic transport are described. Particular attention is given to the hardware development of those variable-geometry features unique to the supersonic transport. The design, development, and current status of a direct lift control sys tern, the supersonic internal-external compression inlet, and the full-scale wing pivot are described.
Technical Paper

The United States SST and Air Quality

1971-02-01
710320
The feasibility of commercial supersonic flight has been questioned on the basis of air pollution and an alleged potential for altering the world's climate and weather. A study conducted by Boeing reveals no basis for any of these claims. However, in some cases more data are required to show there is no effect.
Technical Paper

The Pilot and the Flight Management System

1982-02-01
821386
This paper addresses the question of whether automation is being used in the proper applications in aircraft in order to maximize aircraft capabilities and make the most of human performance capacity. It is believed that the aircraft designers, while employing automation, have given due regard to the pilot's role as operator and manager of the aircraft. There does, however, seem to be valid concern for the human element in certain aspects of the air traffic control system.
Technical Paper

Test Results of the Effects of Air Ionization on Cigarette Smoke Particulate Levels Within a Commercial Airplane

1992-07-01
921183
Passengers and flight attendants often notice a haze of smoke under the overhead stowage bins in aircraft cabins when cigarette smoking is allowed. As normally operated, the ventilation system in Boeing 737/757 aircraft does not rapidly remove this smoke haze. Air ionization systems from three vendors were tested in a 10 foot long Boeing 737/757 cabin test section with a cruise condition ventilation rate and two cigarette smoking rates to assess their effectiveness in removing smoke haze from the local breathing areas of passengers and flight attendants. Smoke particulate densities were monitored at five breathing areas and at an exit grill in the test section. All of the ionization systems significantly increased the rate of smoke removal after smoking had stopped, increasing the removal rate by about 25%. None of the systems showed a statistically significant reduction of smoke levels at the individual monitoring points while cigarettes were being smoked.
Technical Paper

Temperature Control Analysis for the U.S. Lab, Node 1, and Elements Attached to Node 1

1997-07-14
972564
The International Space Station (ISS) Temperature and Humidity Control (THC) system has been designed with the intent of supplying the air cooling needs of various elements from the U.S. Lab heat exchanger assembly. Elements without independent air cooling capability are known as “parasitic” elements; these are Node 1, the Cupola, and the Mini Pressurized Logistics Module (MPLM). Analysis results are presented which show expected temperatures in the MPLM, and Node 1, as various heat loads are present in the respective elements. Analyses within this paper are coordinated with the results obtained from the Development Test of the complex USL/Node 1 integrated ducting system. This test was conducted in the summer of 1995, at the McDonnell Douglas test facility in Huntington Beach, California.
Technical Paper

Specification Reform of Avionics Thermal Design Criteria – An F-15 Case Study

2001-07-09
2001-01-2156
Traditional thermal design criteria for avionics equipment are reviewed. Several studies have recently been conducted on the F-15 to assess accuracy of these design criteria. An overview of the study approach and results are presented. Specific topics investigated include: emergency cooling air provisions, cold start-up, hot start-up, normal and transient bay temperatures, and altitude design. The results indicate that many existing design criteria are overly conservative. The study findings suggest that reform of the existing thermal specification process is needed. Many of these reforms are applicable to the general aerospace industry and may result in significant acquisition cost savings as a result of the trend toward usage of commercial electronic parts. The reforms suggested include a new performance based thermal specification approach that increases emphasis on aircraft usage and frequency of occurrence. New transient design criteria are also recommended.
Technical Paper

Space Station THC/IMV Development Test/Analysis Correlations and Flight Predictions

1997-07-14
972565
The International Space Station (ISS) Temperature and Humidity Control/Intermodule Ventilation (THC/IMV) system for the U.S. Lab provides required cooling air for the U.S. Lab and also provides “parasitic” cooling air for Node 1 and its attached elements. This scheme provides cooled air from the Lab THC directly to Node 1 and also to elements attached to Node 1, at different stages of Space Station assembly. A development test of the U.S. Lab and Node 1/attached elements' integrated THC/IMV ducting system was performed in the summer of 1995. This test included the U.S. Lab's development level Common Cabin Air Assembly (CCAA), which removes sensible and latent heat from the circulated and ducted cabin air. A referenced 1996 ICES Paper contains the initial correlation results. An analytical model has been developed, which has been used to predict flow and pressure drop performance of the system for several potential and actual changes from the Development Test configuration.
Technical Paper

Radar Detection of Turbulence in the Upper Troposphere

1966-02-01
660187
Encounters of jet aircraft with high altitude turbulence prompted the investigation of various techniques to probe and locate turbulence in areas lacking particles (rain drops, hailstones). A promising technique is to measure the radio refractive eddies and gradients by radar backscatter. Radio refractive index eddies can, in principle, be found where an atmosphere characterized by a nonadiabatic lapse rate of refractive index is stirred up by turbulence. A sequence of VHF backscatter experiments which will hopefully lead up to an airborne CAT detector are presented in this paper.
Technical Paper

Process Automation Through-Reality Graphics, Kitting, and Automated Panel Protection

1997-09-30
972806
This paper addresses process improvements through reality graphics (RG) aided by automated panel protection (APP) and tool kitting pertaining to automated wing riveting and fastening. This system provides an integrated display of numerical controlled media, automatic tool identification, and image files, combined with automated panel protection. Reality graphics (image files) within the NC program allow the machine operator to access portions of the NC program while attaching a support graphic. This would include safety hazards, unique panel differences, program start, and tool change information. Automated panel protection (APP) analyze process key characteristics, and perishable tool kits, and it monitors the installation of fasteners using multiple cameras mounted in strategic positions, taking real-time images. The APP detects incorrect tooling and possible panel damage, with little or no impact to the operational cycle time of the automated fastening equipment.
Technical Paper

Problems of Maintaining Equipment Containing Integrated Circuits

1967-02-01
670639
This paper discusses some of the problems of developing and maintaining equipment containing integrated circuits. The problems discussed fall into three categories: (1)Processing, (2) Fault Isolation, and (3) Human Error. Quantitative study of these problems shows the highest number were experienced during preliminary-manufacturing and testing (screening and burn-in), with a decrease during final manufacturing checkout (board assembly and final testing) and a minimum during the system operational period. The paper concludes that maintainability is still the necessity it was even with the advent of reliable integrated circuits. This is substantiated by the many failures and defects encountered during manufacturing and development phases. Manufacturing economics force the consideration of maintainability in integrated circuit design.
Technical Paper

Nozzle Development for the Upper Surface - Blown Jet Flap on the YC-14 Airplane

1974-02-01
740469
A discussion of wing-nozzle configuration development for the application of upper surface blowing to a STOL airplane is presented. The technical challenge is to achieve an integrated system which provides the desired performance for the low speed design conditions and also results in efficient operation during cruise. The resulting configuration is a complete integration of the propulsion system and airplane aerodynamics to achieve efficient operation at all regimes. This paper examines the major design parameters to be considered, describes a number of the configurations tested, and presents static and wind tunnel test results for these configurations. Concluding remarks are made relative to USB nozzle development.
Technical Paper

Non-Linear Aeroelastic Predictions for Transport Aircraft

1990-09-01
901852
A loosely coupled method for aeroelastic predictions of aircraft configurations is shown. This method couples an advanced structural analysis method with a CFD aerodynamics code in a modular fashion. This method can use almost any CFD code, so a validation of several such codes is shown to establish regions of validity for each code. Results from potential codes, an Euler code, and a Navier-Stokes code are shown in comparison with experiment. Viscous effects are included in most cases through a coupled boundary-layer solver or a turbulence model as appropriate.
Technical Paper

Noise Implications for VTOL Development

1970-02-01
700286
Noise from the aircraft may prevent the establishment of VTOL ports near population centers-the locations which can provide a significant contribution to mass transportation. To determine how annoying these aircraft may be, a total community annoyance measure (TCAM) has been developed. The TCAM can indicate flight trajectories which minimize the annoyance of the aircraft and the type of aircraft which are acoustically acceptable for operations from a V/STOL port. Low disc loading rotors seem best for operation near terminals while low tip speed propellers are best for cruise.
Technical Paper

Modeling and Simulation of Complex Hydraulic Valves Using EASY5 Software

1997-09-08
972766
Many mechanical systems employing fluid power use one or more valves to control fluid flow. Often these valves can be quite complex, with many inlets and exits, reversing flow, flow and pressure control, and other unique features. It is desirable to model these valves and the associated fluid and control logic circuits with software during the design phase, and explore the effect of design changes on system performance using simulation and other analyses without having to build and modify expensive prototypes. A number of commercially available software packages offer various methods for “graphically modeling” dynamic systems, and some, offer the user pre-defined libraries of hydraulic components that greatly speed the modeling process. However, the variations on valve design are unlimited, and it is often necessary to model a hydraulic valve that has not been previously defined. This paper describes an approach allowing essentially any valve configuration to be modeled.
Technical Paper

Managing the Technical Development of the 727

1962-01-01
620464
Studies in a jet passenger airliner to service shorter routes than those of the Boeing 707 evolved the concept of a rear mounted three engine jet, the 727. The development program had many facets, including extensive use of mockups, customer influence on design through liaison, cost control, and a considerable amount of work on the design of the tail and location and number of engines on the craft.
Technical Paper

Machined Component Quality Improvements Through Manufacturing Process Simulation

2001-09-10
2001-01-2607
New manufacturing technologies such as high speed machining (HSM) are being developed to produce high quality aerospace components. While our developing understanding of machining dynamics is enabling precise control of cutting tools to provide for high dimensional accuracy, residual stresses present in aluminum mill products can compromise the ability to machine dimensionally accurate components from these stock materials. The advantages of precise tool control can be lost if the metal being cut moves during machining. And, even a perfectly machined part that distorts when it is released from the machine bed will cause problems upon assembly. Thus, ensuring the quality of the mill product becomes an enabling technology for advanced manufacturing approaches such as HSM.
Technical Paper

Integrated Metrology & Robotics Systems for Agile Automation

2000-09-19
2000-01-3033
Aircraft manufacturing in the 21st century sees a future much different to that seen one and two decades before. Manufacturers of both military and commercial aircraft are challenged to become Lean, Agile and Flexible. As progress is slowly made toward introducing advanced assembly systems into production, the overall cost of automation is now more closely scrutinized. After spending tens of millions of dollars on large automated systems with deep foundations, many manufacturers find themselves locked into high cost manufacturing systems that have specific, inflexible configurations. This kind of scenario has caused a shift in the attitude of airframe assemblers, to go back to basics. Lean manufacturing is seen as a way to build aircraft with very low investment in equipment and tools. Today's advanced systems developers do understand the need for more affordable assembly systems.
Technical Paper

Inlet Hot Gas Ingestion (HGI) and Its Control in V/STOL Aircraft

1997-10-01
975517
A successful methodology was developed at Boeing Company to investigate hot-gas ingestion in vertical take-off and landing aircraft. It involves sub-scale model testing using specialized test facilities and test techniques. The baseline characteristics of hot-gas ingestion (HGI) and the performance of various HGI reduction techniques were qualitatively evaluated in the Boeing Hover Research Facility. Potential HGI reduction devices were then further tested at scaled pressures and temperatures in HGI facilities at NASA Lewis, Rolls Royce and British Aerospace. One of the successful HGI reduction devices was flight tested. This paper describes the application of Boeing HGI reduction methodology to three specific aircraft configurations.
Technical Paper

Incipient Failure Detection - The Detection of Certain Contaminating Processes

1967-02-01
670633
Three separate and distinct electrolytic and one galvanic process were identified by visual inspection, metallographic, electron microprobe, and x-ray diffraction analysis in a clocked, flip-flop integrated circuit flat pack and/or the associated printed circuit test jig (two on flat pack and two on circuit board). These four processes were all found to be detectable by the use of noise measurements in microvolts per root cycle at 1000 Hz (cycles per second). The direct current applied for noise measurement to the integrated circuit devices was 100 micro-amperes, as compared to the 6-8 milliamperes required for normal operation. After initial experimentation, the devices were caused to fail in a laboratory ambient environment, followed by an acceleration of the rate of electrolytic reaction through the use of essentially 100 percent relative humidity, versus the upper specification limit of 80 to 98% relative humidity.
Technical Paper

Gaugeless Tooling

1998-09-15
982147
At The Boeing Company, the advent of a Determinant Assembly (DA) program and the subsequent production of accurate fuselage subpanels created a need to be able to position subpanels accurately and repeatably during fuselage assembly. The tool engineering organization of The Boeing Company and Advanced Integration Technology, Inc. (AIT) as the prime contractor, are developing and installing automated positioning and alignment systems throughout major 747 fuselage assembly areas which enable DA techniques. The benefits of this assembly approach and this automated precision tooling are flexibility, assembly accuracy, ease of assembly and associated speed, reduced downtime for tool maintenance, and improved shop-floor ergonomics.
X